Homework 5
Quantum Information Processing

Exercise 1 Dynamics of Spin 1/2
We consider a magnetic moment with spin $1 / 2$ whose dynamics is described by a Hamiltonian of the form

$$
H=\frac{\hbar \delta}{2} \sigma_{z}-\frac{\hbar \omega_{1}}{2} \sigma_{x}
$$

where \hbar is Planck's constant, δ and $\omega_{1} \in \mathbb{R}$ and the Pauli matrices $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \sigma_{x}=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. We recall the formula :

$$
\exp \left(i \frac{a}{2} \mathbf{n} \cdot \vec{\sigma}\right)=\left(\cos \frac{a}{2}\right) I+i\left(\sin \frac{a}{2}\right) \mathbf{n} \cdot \vec{\sigma}
$$

with $a \in \mathbb{R}$ et $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$ a unit vector, $\mathbf{n} \cdot \vec{\sigma}=n_{x} \sigma_{x}+n_{y} \sigma_{y}+n_{z} \sigma_{z}$, and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
a) Compute the evolution matrix (operator)

$$
U(t, 0)=\exp \left(-i \frac{t}{\hbar} H\right)
$$

and express it in matrix form, and also in Dirac's notation. We recall the conventional coordinate representation $|\uparrow\rangle=\binom{1}{0}$ and $|\downarrow\rangle=\binom{0}{1}$.
b) Consider the case $\omega_{1} \ll \delta$ and the initial state at $t=0, \frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle)$.

- Compute a good approximation of the state at time t (hint : take the limit $\omega_{1} \rightarrow 0$ and δ fixed).
- Represent the trajectory on the Bloch sphere in this limit.
- Is it periodic? If yes what is the period?
c) Consider now the case $\delta \ll \omega_{1}$ and the initial state at $t=0,|\uparrow\rangle$.
- Compute a good approximation of the final state at time t (hint : take the limit $\delta \rightarrow 0$ and ω_{1} fixed).
- Represent again the trajectory on the Bloch sphere in this limit.
- Is it periodic? If yes what is the period?

We consider two spin $\frac{1}{2}$ with interaction Hamiltonian $\mathcal{H}=\hbar J \sigma_{1}^{z} \otimes \sigma_{2}^{z}$ (these can be spins of nuclei in a molecule say). The unitary evolution operator of this system is $U=\exp \left(-\frac{i t}{\hbar} \mathcal{H}\right)$. Let

$$
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle) \otimes \frac{1}{\sqrt{2}}(|\uparrow\rangle-|\downarrow\rangle)
$$

be the initial state of the two spins.
a) Show that the state after time $t=\frac{\pi}{4 J}$ is

$$
\left|\psi_{t}\right\rangle=\frac{e^{-\frac{i \pi}{4}}}{2}(|\uparrow \uparrow\rangle-i|\uparrow \downarrow\rangle+i|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle)
$$

b) Show that this state is entangled, i.e., it is impossible to write it in the form

$$
(\alpha|\uparrow\rangle+\beta|\downarrow\rangle) \otimes(\gamma|\uparrow\rangle+\delta|\downarrow\rangle)
$$

c) Now we let the state obtained above still evolve for an interval of time $\frac{\pi}{4 J}$. Calculate the final state and determine if it is entangled or not.
d) What happens if we let the initial state $\left|\Psi_{0}\right\rangle$ evolve during an interval of time $\frac{\pi}{J}$?

Exercise 3 The no-cloning theorem

We want to prove that non-orthogonal states cannot be "copied" with the same unitary matrix.

In other words let $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle$ in some Hilbert space \mathcal{H} and let $|O\rangle$ be a "blank" state which plays the role of a place-holder for the copy. The theorem states that there does not exist a $U: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$ such that,

$$
U\left|\phi_{i}\right\rangle \otimes|O\rangle=\left|\phi_{i}\right\rangle \otimes\left|\phi_{i}\right\rangle, \quad i=1,2
$$

Use the following hints to find two proofs of this fact
a) The first proof only uses only that U is unitary.

Hint : assume a unitary U exists that satisfies the above two equations (for $i=1,2$) and find a contradiction.
b) The second proof uses the superposition principle and the linearity of U (it does not really need unitarity).
Hint : consider the action of a linear matrix U that satisfies the above equations on a state which can be writen in two equivalent ways :

$$
\left(\left|\phi_{1}\right\rangle+\left|\phi_{2}\right\rangle\right) \otimes|O\rangle=\left|\phi_{1}\right\rangle \otimes|O\rangle+\left|\phi_{2}\right\rangle \otimes|O\rangle
$$

and find a contradiction.

