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Collisional processes in plasmas

• Basic concept of collisions

– Coulomb collisions as elastic collisions - main properties

• Multiple collisions in plasmas

– Rutherford differential cross-section and the small angle approximation

– Integration over the impact parameter and Coulomb logarithm

• Effective collision frequencies and cross-sections

– For the exchange of energy and momentum

– Average over a distribution function

• Relaxation processes and relevant time scales

• Application of collision theory

– Plasma resistivity

– Run-away process
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1 Basic concept of collisions

Which collisions occur in plasmas for fusion?

• collisions between charged particles and neutrals

• collisions between charged particles and charged particles (Coulomb collisions)

Note 4.1.1:

• To call the interaction between charged particles a “collision” is in fact an approximation.
We know that charged particles interact with each other in large numbers (within the
Debye sphere). But we assume that such interactions can be approximated by a
sequence of binary interactions.

• We also assume that Coulomb collisions are elastic, meaning that we neglect
bremsstrahlung radiation (as Wrad

1
2
mv2
∼

(
v
c

)3 ≪ 1).
Fusion plasmas are in general strongly ionized, in the sense that Coulomb collisions dominate
over all other kinds of collisions. This situation is described by λmfp

Coulomb < λ
mfp
other collisions.

Equivalently, Coulomb collisions are more frequent than other types of collisions.

1.1 Theory of Coulomb collisions

We begin by studying the collision between two particles of charges q1 and q2 and masses m1
andm2 that interact through the Coulomb force. Noting their positions r1 and r2 respectively,
we can define the center of mass as

R =
m1r1 +m2r2
m1 +m2

as well as the relative position r = r1− r2 and the reduced mass, µ = m1m2
m1+m2

. By writing the
equations of motion with respect to these new variables, it appears that the collision can be
treated by studying the motion of a test particle q1 of mass µ in the Coulomb potential of
a fixed charge q2. This is then the classical problem of a particle in a central potential. The
situation is presented in Fig. 1.

We assume that the collisions are elastic, and note that the Coulomb force is radial. Thus,
p and E are conserved, the motion is in a single plane and the angular momentum is also
conserved.

The conservation laws give:

tan
θ

2
=
b90
b

with b90 = b90(v) =
q1q2
4πϵ0µv2

, (1.1)

where v is the relative velocity, and b90 is the impact parameter that results in a diffusion
at an angle of θ = 90° (π/2 radians). This expression is valid in the center of mass frame.
Note that θ is the angle of deflection only if the target particle is fixed, otherwise one needs
to return to the reference frame of the lab in order to calculate this.
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Figure 1: Geometry for one collision and definition of the impact parameter b.

1.2 Effect of multiple collisions

We need to look at the different deflection angles/impact parameters.

Rutherford differential cross-section

Rather than knowing the impact parameter b exactly, we suppose that the test particle is
incident in a surface dS = 2πb db. The solid angle dΩ is given by d(area)

r2
. The geometry

gives

dσ = 2πb|db|

dΩ =
2πr sin θr |dθ|

r2
= 2π sin θ|dθ|

r

dΩ (solid angle)
dσ

θ

dθ

db

rdθ

r·sinθ

Figure 2: Definition of the differential cross-section.
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Definition: The differential cross-section dσ
dΩ is defined such that

ntargets

(
dσ
dΩ

)
dΩ ⇐⇒ the number of particles per unit path

length scattered into solid angle dΩ.

In other words, the differential cross-section is defined by the probability
( dσ

dΩ

)
dΩ that the

test particle diffuses into a solid angle dΩ.

By using Eq. 1.1, Rutherford’s cross-section can be expressed as:

dσ
dΩ
=
2πb|db|
2π sin θ|dθ| = −

b

sin θ

db
dθ
= · · · =

b290
4

1

sin4 (θ/2)
(1.2)

=
q21q

2
2

(4πε0)2µ2v4
1

4 sin4 (θ/2)
.

Example application: To get the cross-section for collisions with angles of deflection larger
than 90◦, we could calculate:

σ(θ ≥
π

2
) =

∫ θ=π
θ=π/2

dσ
dΩ

dΩ(θ) =
b290
4

∫ π
π/2

2π sin θdθ

sin4 θ2
= πb290,

as expected from the definition/meaning of b90.

Note 4.1.2:

• dσ
dΩ ∝ v

−4: as the collision rate goes like v dσ
dΩ ∝ v

−3, it scales like T−3/2

(the hotter the plasma, the less collisional).

• dσ
dΩ ∝

1

sin4 θ
2

for small angles dσ
dΩ ∝ θ

−4. The small angle collisions dominate. This

means that large diffusions are generally the result of several diffusions at small angles.

From now on, we will consider only small angle collisions.

Integration over all possible impact parameters

Energy transfer rate

Noting EK = 1
2m1v

2
1 , the energy exchanged over the collision is:

∆EK = EK
m1m2

(m1 +m2)2
θ2
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We have assumed that v2 = 0. But for small θ, tan θ2 ∼
θ
2
∼= b90

b . So the energy lost in one
collision is given by

∆EK = EK
m1m2

(m1 +m2)2

(
2b90
b

)2
Per unit path length, for impact parameter in interval db

dEK
dl

∣∣∣∣
db
= ∆EKndσ

where ndσ = # of collisions per unit length. So for all b’s,

dEK
dl

∣∣∣∣
all b’s

=

∫ bmax
bmin

dEK
dl

∣∣∣∣
db
=

∫ bmax
bmin

∆EKndσ =
∫ bmax
bmin

EK
m1m2

(m1 +m2)2
4b290
b2
2πnbdb

= 8π
m1m2

(m1 +m2)2
EKnb

2
90

∫ bmax
bmin

db
b
.

Discussion: What are bmin and bmax?

• bmin : We are considering only small angles. For b < b90 the assumption of small
angles would be violated (Eq. 1.1). Thus, bmin ≃ b90. Note that at very high Te ,
b90 becomes so small that quantum mechanical corrections must be included. In such
cases one can take bmin ≃ λDeBroglie = h/mv .

• bmax : Remember the Debye screening effect: outside the Debye sphere, the potential
is screened, so the “collision" does not “occur". As a result, bmax ≃ λD.

Thus, after integration:

dEK
dl
= EKn8πb

2
90

m1m2
(m1 +m2)2

ln Λ (1.3)

where ln Λ is the so called Coulomb logarithm and

Λ =
λD
b90
. (1.4)

Note that because of the very weak logarithmic dependence, the exact choice of bmin, bmax
is arbitrary.

2 Effective collision frequency for relaxation processes

For the exchange of the quantities of interest, the effective collision frequency is given by

Effective collision frequency =
1

characteristic time
The characteristic time τ is the time between collisions; thus noting ν the frequency of
collisions, ν = 1

τ . The effective collision frequency for the exchange of energy is,

νEK =
1

EK

dEK
dt

=
v= dl

dt

1

EK
v

dEK
dl
= 8πn

q21q
2
2

(4πε0)2
ln Λ

m1m2v3

As v = λ
τ , ν = nσv . So the effective cross section is given by σEK =

νEK
nv .
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Exchange of momentum

From the theory of binary collisions, we have

σp = σEK
m1 +m2
2m1

=
1

2
σEK

(
1 +
m2
m1

)
=


1
2σEK if m2 ≪ m1,
σEK if m2 = m1,
1
2σEK

m2
m1
≫ σEK if m2 ≫ m1.

The typical case of electrons impinging on ions is characterized for example by m2 >> m1.

The general form of νEK for collisions of particles of species j (projectiles) upon particles of
species k (targets) is

ν
j/k
EK
∼ nk

Z2kZ
2
j e
4

2πε20

ln Λk

mjmkv
3
jk

(2.1)

Note 4.2.1:

• vjk =
∣∣∣→v j − →v k ∣∣∣ is the relative velocity

• ln Λk can be considered ∼ constant (for example, ln Λe ∼ ln Λi). Typical values of ln Λ
range between 10 and 20 for plasmas of interest.

From a single velocity to a full distribution

We still need one conceptual step to describe relaxation processes for a whole plasma: to
go from a single velocity/energy to a full distribution. For this, we need to average the
physical quantity of interest (e.g. the loss/exchange rate of momentum) over a distribution
function. But which distribution should we consider? Experiments suggest a Maxwellian

for the electrons (fe(v) ∼ e
mv2

2kbTe ), even in cases for which we do not expect to reach an
equilibrium. So, we go from νEK (v) to ν̄EK (v) or νp(v) to ν̄p(T ).
Instead of doing the calculation, we could guess, for example for ν̄e/ip that ν̄e/ip = ν

e/i
p (vth,e),

where vth,e =
√
Te
me

. In fact, we would not be too wrong. The full calculation gives

ν̄
e/i
p =

1

⟨|p|⟩t=0

〈
d|p|
dt

〉
=

1

⟨|p|⟩t=0
1

ne

∫
dv fe(v)mevν

e/i
p︸ ︷︷ ︸

d|p|
dt

=

· · · =
1

3

√
2

π
ν
e/i
p (vth,e) ∼= 0.26νe/ip (vth,e).
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Summary of average collision frequencies

The table below presents the collision frequencies of collisions between different species
(electrons and ions), for the exchange of momentum and energy.

Momentum Energy

e → i νe ≡ ν̄e/ip = 1
3

√
2
πν
e/i
p (vth,e) =

1
3

√
2
π
niZ

2e4 ln Λ

4πε20m
1/2
e T

3/2
e

ν̄
e/i
EK
= 2memi νe

e → e ν̄
e/e
p
∼= 1√

2
νe ν̄

e/e
EK
= ν̄

e/e
p

i → e ν̄
i/e
p
∼= me
mi
νe ν̄

i/e
EK
∼= 2ν̄ i/ep ∼= ν̄e/iEK

i → i νi ≡ ν̄ i/ip = 1√
2

(
me
mi

)1/2 (
Te
Ti

)3/2
νe ν̄

i/i
EK
= νi

Note 4.2.2:

• We could proportionally relate all frequencies to the e/i case.

• For Te = Ti and Z = 1, we have

νe
νi
=

√
2mi
me
.

Characteristic time scales

Figure 3: Characteristic time scales for thermalisation and isotropisation in plasmas.
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Note 4.2.3:

(a) This time scale corresponds to isotropisation and thermalisation of electrons (→ Te).

(b) This time scale corresponds to isotropisation and thermalisation of ions (→ Ti).

(c) This time scale corresponds to the thermalisation of electrons with ions (Te , Ti → T ).

Numerical examples

• Hydrogen-plasma (Z = 1):

νe ∼= 5× 10−11
n[m−3]

T
3/2
e [eV]

s−1 and νi ∼= 10−12
n[m−3]

T
3/2
i [eV]

s−1.

• For "ITER-like" plasma: Te = Ti = 15keV, n = 3× 1020m−3 so

νe ∼ 8× 103s−1 → τe ∼= 0.1ms and νi ∼= 160s−1 → τi ∼= 6ms.

But, τthermal equilibium e↔i ∼ mi
me
τe = 1840× 0.1ms ∼ 0.2s

Note 4.2.4:

• This large difference in time-scales means that for “not so slow” phenomena we should
treat the plasma as made of different species with independent equilibria and, in general,
different temperatures as well. For slow phenomena we could also treat the plasma as
a single fluid.

• For T ∼ 10− 20 keV, σCoul ≫ σf usion: particles are confined for many collision times
before they fuse.

• νe , νi ≪ Ωe ,Ωi : dynamics is still dominated by Larmor (or drift) motion.

3 Plasma resistivity and run-away process

Take a fully ionised plasma to which we apply an external electric field E. Electrons and ions
will be accelerated in opposite directions, but will also be subject to a friction force due to
Coulomb collisions. This friction force is responsible for the finite resistivity of the plasma.
In order to calculate it, we assume:

• Only electrons carry currents1

• Only e → i collisions occur (ignore e → e)
1me ≪ mi ; for similar energies −→ |vi | ≪ |ve |
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• The distribution of electrons remains Maxwellian with a drift vd

The momentum equation2 parallel to E (and B, or with B = 0) can be written in scalar
form:

me
dvd
dt
= −eE︸︷︷︸

acceleration

−
mevd

τ
e/i
p (v)︸ ︷︷ ︸

deceleration

(3.1)

Note that for electrons the directions of vd and E are opposite. To solve Eq. 3.1 we need
to evaluate τe/ip ; but for which velocity? Two cases can be distinguished:

1. vd ≪ vthe

2. vd ≥ vthe

Case vd ≪ vthe

In this case, the velocity that dominates in the definition of the relative velocity in the collision
corresponds to the electron thermal motion and does not depend on vd. We have a steady–
state solution ( ddt = 0), in which the acceleration due to the electric field is balanced by the
collisional drag exerted by the ions:

τ
e/i
p eE = −mevd ⇒ v terminald = −

τ
e/i
p eE

me
. (3.2)

As the current j = −enevd, the previous equation can be recast as

τ
e/i
p eE =

me j

ene
or j =

e2ne

me ν̄
e/i
p

E. (3.3)

With the definition of the resistivity η, j = η−1E, we find

η =
me ν̄

e/i
p

e2ne
=
me
e2ne

1

3

√
2

π

(niZ)Ze
4 ln Λ

4πε20m
1/2
e T

3/2
e

=

√
2

π3/2
m
1/2
e Ze

2 ln Λ

12ε20T
3/2
e

. (3.4)

We observe that:

• There is no dependence on the plasma density. In fact, increasing the density, increases
both the number of carriers and the number of collisions, so the two effects cancel out.

• η ∝ T−3/2e . For a metal, η ∝ Tαe , with α > 0: very different!

• Our simple calculation over–estimates η by a factor of 2 because we did not account
for the acceleration of electrons by E: faster electrons are less subject to collisions and
carry more current.

2Note that we need to consider momentum exchange collisions, as we have to do with directed velocity.
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• From more complete calculations:

η [Ωm] =
Ze2
√
me ln Λ

4πϵ203
√
2πT

3/2
e

= 5.1 · 10−5 ×
Z ln Λ

(Te [eV])3/2
(3.5)

This is known as the Spitzer resistivity. The estimated value from this equation agrees
reasonably well with experiments.

Examples:

1. Plasma at 100 eV: η ∼ 6 · 10−7 Ωm [∼ η of stainless steel]
2. Plasma at 1 keV: η ∼ 2 · 10−8 Ωm [∼ η of copper]3

3. For T ≫ 1 keV plasma becomes almost a perfect conductor

The decrease of the resistivity with temperature has two consequences:

1. The magnetic flux becomes ‘frozen’ within the plasma – a general property of super-
conductors4

2. Heating by current (‘ohmic heating’) becomes less and less effective at high Te . The
increase in energy per unit volume is

Power

Volume
= force× velocity × density = e|E| × vd × n = ηj2 ∝ T−3/2e . (3.6)

Note that in the presence of B (with B∥E), we would have η∥ ≈ η and η⊥ > η: particles
move preferentially along the magnetic field lines, therefore the resistivity in this direction is
smaller than in the direction perpendicular to B.

Case vd ≳ vthe

If the field E is sufficiently high such the the relative drift speed becomes not much smaller
than the electron thermal speed, τe/ip cannot be considered independent of vd and we do not
necessarily reach a steady–state solution. In this case we cannot take the value of νe/ip aver-
aged over a Maxwellian distribution, but we need to retain the velocity dependent expression
of νe/ip (vd) and the time derivative d/dt.

Thus

me
dvd
dt
= −eE − νe/ip (vd)mevd. (3.7)

The key question is the sign of the term on the right hand side. For

e|E| > νe/ip mevd (3.8)

we have acceleration, otherwise deceleration. If we have acceleration, an increase in vd leads
to a decrease in νe/ip . Then there is even more acceleration and so on. This is called the

4e.g. solar wind carrying B–field with it.
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run-away regime: electrons with sufficiently high velocity are accelerated more and more by
E as the collisional drag due to the friction force is insufficient to balance the acceleration
given by the electric field (Fig. 4).

ac
ce

le
ra

ti
on

de
ce

le
ra

ti
on

v
d

Run−away region

d
−2∼v

∼vd

vv v
d
terminal

th,eth,i

Fc

qE

F  > qEc

F  < qEc

Figure 4: Sketch of the collisional drag Fc acting on electrons as a function of their velocity
vd for E > ED. The black arrows indicate the overall acceleration or deceleration.

By expressing νe/ip in terms of vd, ν
e/i
p = ν

e/i
p (vd) we have5

e|E| >
(niZ)Ze

4

4πϵ20

lnΛ

m2ev
3
d

mevd

which implies

|E| >
neZe

3 ln Λ

4πε20mev
2
d

or
1

2
mev

2
d >

neZe
3 ln Λ

8πε20|E|
(3.9)

Let’s divide by Te :
1

2

mev
2
d

Te
>
ED
|E| (3.10)

where we have introduced the Dreicer electric field ED := neZe3 ln Λ
8πε20Te

.

The meaning of this equation is that for |E| = ED, the run-away regime is reached at

Edrift =
1

2
mev

2
d = Te

.

The production of run-away electrons is a serious problem in tokamaks. For typical parame-
ters of fusion plasmas the Dreicer field can be as low as 1 V/m. The probability of generating
run-away electrons is then quite high, and these electrons can reach energies of the order of
a few MeV. If their number is sufficiently high they give rise to ’electron beams’ that are no
longer confined inside the plasma. In fact, they are thought to be responsible for damage to
the vacuum vessel walls and to other components installed inside the vessel following loss of

5We have done this calculation in the exercise session
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Figure 5: Melting damage to the upper inner wall of JET, thought to be caused by run-away
electrons.

confinement of the runaway electron population and their collisions with the wall (Fig. 5).

One of the problems to be solved for ITER is how to avoid, or mitigate, the generation
of run-away electrons following a plasma disruption (a sudden loss of current, hence of
confinement).

Once an electron exceeds the critical velocity (Eq. 3.10), it is continuously accelerated and
can reach energies of several tens of MeV. Because of the toroidal acceleration, electrons
emit synchrotron radiation. A relativistic limit to the maximum energy an electron can reach
is given by a balance between the amount of power that is absorbed from the accelerating
electric field and the amount of power lost by electromagnetic radiation.
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