Solution 4

Quantum Information Processing

Exercise 1 Properties of Pauli matrices

a) We have :

$$
A=a_{0} I+a_{1} \sigma_{x}+a_{2} \sigma_{y}+a_{3} \sigma_{z}=\left(\begin{array}{cc}
a_{0}+a_{3} & a_{1}-i a_{2} \\
a_{1}+i a_{2} & a_{0}-a_{3}
\end{array}\right)
$$

Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. One must have

$$
\left\{\begin{array}{l}
a_{0}+a_{3}=a_{11} \\
a_{0}-a_{3}=a_{22}
\end{array}\right.
$$

which implies $a_{0}=\frac{a_{11}+a_{22}}{2}$ et $a_{3}=\frac{a_{11}-a_{22}}{2}$. On the other hand one must have :

$$
\left\{\begin{array}{l}
a_{1}-i a_{2}=a_{12} \\
a_{1}+i a_{2}=a_{21}
\end{array}\right.
$$

which implies $a_{1}=\frac{a_{12}+a_{21}}{2}$ et $a_{2}=\frac{a_{21}-a_{12}}{2 i}$.
Thus 2×2 matrices A can be written as :

$$
A=\frac{a_{11}+a_{22}}{2} I+\frac{a_{12}+a_{21}}{2} \sigma_{x}+\frac{a_{21}-a_{12}}{2 i} \sigma_{y}+\frac{a_{11}-a_{22}}{2} \sigma_{z} .
$$

Note that if $A=A^{\dagger}$, since $\sigma_{x}=\sigma_{x}^{\dagger}, \sigma_{y}=\sigma_{y}^{\dagger}, \sigma_{z}=\sigma_{z}^{\dagger}$, one must also have a_{0}, a_{1}, a_{2}, $a_{3} \in \mathbb{R}$.
b) These relations are checked by explicit calculation. Note that they are related by cyclic permutations of $x y z$.
c) Idem
d) Diagonalization of σ_{x}.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=\lambda\binom{v_{1}}{v_{2}} \Longrightarrow\left\{\begin{array}{l}
v_{1}=\lambda v_{2} \\
v_{2}=\lambda v_{1}
\end{array}\right.
$$

$\Rightarrow v_{1}=\lambda^{2} v_{1}$ and $v_{2}=\lambda^{2} v_{2}$. To have $v_{1}, v_{2} \neq 0$ it must be that $\lambda^{2}=+1$ and thus $\lambda= \pm 1$. The eigenvalues are ± 1.
The eigenvector corresponding to $\lambda=+1$ satisfies

$$
\begin{gathered}
v_{1}=v_{2} \quad \text { et } \quad v_{2}=v_{1} \\
\Rightarrow \frac{1}{\sqrt{2}}\binom{1}{1} \text { is a normalized eigenvector }
\end{gathered}
$$

The eigenvector associated to $\lambda=-1$ satisfies :

$$
\begin{gathered}
v_{1}=-v_{2} \quad \text { et } \quad v_{2}=-v_{1} \\
\Rightarrow \frac{1}{\sqrt{2}}\binom{1}{-1} \text { is a normalized eigenvector }
\end{gathered}
$$

Diagonalization of σ_{y}.
We proceed as above :

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & -i \\
i & -\lambda
\end{array}\right)=\lambda^{2}-(-i)(i)=\lambda^{2}-1=0 \Rightarrow \lambda= \pm 1
$$

The eigenvector associated to $\lambda=+1$ satisfies

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=+1\binom{v_{1}}{v_{2}} \Rightarrow\left\{\begin{array}{r}
-i v_{2}=v_{1} \\
i v_{1}=v_{2}
\end{array}\right.
$$

One can choose $v_{1}=1$ et $v_{2}=i$

$$
\Rightarrow \frac{1}{\sqrt{2}}\binom{1}{i} \text { is a normalized eigenvector. }
$$

For the eigenvector associated to -1 we have :

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=-1\binom{v_{1}}{v_{2}} \Rightarrow\left\{\begin{array}{r}
-i v_{2}=-v_{1} \\
i v_{1}=-v_{2}
\end{array}\right.
$$

We choose $v_{1}=1$ et $v_{2}=-i$

$$
\text { Thus } \frac{1}{\sqrt{2}}\binom{1}{-i} \text { is a normalized eigenvector. }
$$

Diagonalization of σ_{z}.

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { in the basis }\binom{1}{0} \text { et }\binom{0}{1}
$$

Thus 1 is the eigenvalue associated to $\binom{1}{0}$ and -1 the eigenvalue associated to $\binom{0}{1}$.
Trace. The trace of a matrix is the sum of diagonal elements and is invariant under change of basis. It is also the sum of eigenvalues. One can check that every thing is consistent $\operatorname{Tr} \sigma_{x}=\operatorname{Tr} \sigma_{y}=\operatorname{Tr} \sigma_{z}=0$.
Determinant. The determinant equals $a_{11} a_{22}-a_{12} a_{21}$ and is also invariant under change of basis. It is also the product of eigenvalues. One can again check that everything is consistent $\operatorname{det} \sigma_{x}=\operatorname{det} \sigma_{y}=\operatorname{det} \sigma_{z}=-1$.
e) In Dirac notation a 2×2 matrix becomes :

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=a_{11}|\uparrow\rangle\langle\uparrow|+a_{12}|\uparrow\rangle\langle\downarrow|+a_{21}|\downarrow\rangle\langle\uparrow|+a_{22}|\downarrow\rangle\langle\downarrow| .
$$

We also remark the important relations :

$$
\langle\uparrow| A|\uparrow\rangle=a_{11} ;\langle\uparrow| A|\downarrow\rangle=a_{12} ;\langle\downarrow| A|\uparrow\rangle=a_{21} \text { et }\langle\downarrow| A|\downarrow\rangle=a_{22} .
$$

We note

$$
|\uparrow\rangle\langle\uparrow|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) ;|\uparrow\rangle\langle\downarrow|=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) ;|\downarrow\rangle\langle\uparrow|=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text { et }|\downarrow\rangle\langle\downarrow|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text {. }
$$

From which the expressions of Pauli matrices in Dirac notation follow.

Exercise 2 Exponentials of Pauli matrices

1.

$$
\vec{n} \cdot \vec{\sigma}=n_{x} \sigma_{x}+n_{y} \sigma_{y}+n_{z} \sigma_{z} \quad \text { by definition }
$$

$$
\begin{aligned}
(\vec{n} \cdot \vec{\sigma})^{2} & =\left(n_{x} \sigma_{x}+n_{y} \sigma_{y}+n_{z} \sigma_{z}\right)\left(n_{x} \sigma_{x}+n_{y} \sigma_{y}+n_{z} \sigma_{z}\right) \\
& =n_{x}^{2} \sigma_{x}^{2}+n_{y}^{2} \sigma_{y}^{2}+n_{z}^{2} \sigma_{z}^{2} \\
& +n_{x} n_{y} \sigma_{x} \sigma_{y}+n_{y} n_{x} \sigma_{y} \sigma_{x} \\
& +n_{x} n_{z} \sigma_{x} \sigma_{z}+n_{z} n_{x} \sigma_{z} \sigma_{x} \\
& +n_{y} n_{z} \sigma_{y} \sigma_{z}+n_{z} n_{y} \sigma_{z} \sigma_{y} \\
& =\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) I=I
\end{aligned}
$$

In the second equality we were careful to note that Pauli matrices do not commute.. In the third one we used the relation in point 2 . In the last one we used that \vec{n} is a unit norm vector.
This identity implies $(\vec{n} \cdot \vec{\sigma})^{3}=\vec{n} \cdot \vec{\sigma} ;(\vec{n} \cdot \vec{\sigma})^{4}=I$; etc...
Thus

$$
\begin{aligned}
\exp (i t \vec{n} \cdot \vec{\sigma}) & =\sum_{k=0}^{+\infty} \frac{(i t)^{k}}{k!}(\vec{n} \cdot \vec{\sigma})^{k} \\
& =\sum_{k \text { even }} \frac{(i t)^{k}}{k!} I+\left\{\sum_{k \text { odd }} \frac{(i t)^{k}}{k!}\right\}(\vec{n} \cdot \vec{\sigma})
\end{aligned}
$$

Moreover

$$
\begin{equation*}
\cos t=\sum_{k \text { even }} \frac{(i t)^{k}}{k!} \quad \text { et } \quad i \sin t=\sum_{k \text { odd }} \frac{(i t)^{k}}{k!} \tag{*}
\end{equation*}
$$

(Parenthesis : note that

$$
\begin{gathered}
e^{i t}=\cos t+i \sin t \quad \text { thus : } \\
\sum_{k \text { pairs }} \frac{(i t)^{k}}{k!}+\sum_{k \text { impairs }} \frac{(i t)^{k}}{k!}=\cos t+i \sin t,
\end{gathered}
$$

changing $t \rightarrow-t$ we also have

$$
\sum_{k \text { pairs }} \frac{(i t)^{k}}{k!}-\sum_{k \text { impairs }} \frac{(i t)^{k}}{k!}=\cos t-i \sin t
$$

and adding or subtracting we find $(*)$.)
Finally we proved :

$$
\exp (i t \vec{n} \cdot \vec{\sigma})=(\cos t) I+(i \sin t) \vec{n} \cdot \vec{\sigma}
$$

Exercise 3 Rotations on the Bloch sphere

A general vector can be written in the form $\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+\sin \left(\frac{\theta}{2}\right) e^{i \phi}|\downarrow\rangle$ in the Bloch sphere.
a) The eigenvectors for σ_{z} basis are $|\uparrow\rangle$ and $|\downarrow\rangle$, corresponding to $(\theta=0, \phi=0)$ and ($\theta=\pi, \phi=0$), respectively.
The eigenvectors for σ_{y} basis are $\frac{1}{\sqrt{2}}|\uparrow\rangle+\frac{i}{\sqrt{2}}|\downarrow\rangle$ and $\frac{1}{\sqrt{2}}|\uparrow\rangle-\frac{i}{\sqrt{2}}|\downarrow\rangle$, corresponding to ($\theta=\frac{\pi}{2}, \phi=\frac{\pi}{2}$) and ($\theta=\frac{\pi}{2}, \phi=-\frac{\pi}{2}$), respectively.
The eigenvectors for σ_{x} basis are $\frac{1}{\sqrt{2}}|\uparrow\rangle+\frac{1}{\sqrt{2}}|\downarrow\rangle$ and $\frac{1}{\sqrt{2}}|\uparrow\rangle-\frac{1}{\sqrt{2}}|\downarrow\rangle$, corresponding to ($\theta=\frac{\pi}{2}, \phi=0$) and ($\theta=\frac{\pi}{2}, \phi=\pi$), respectively.
The corresponding representation over the Bloch sphere is shown in Figure 1.
b) Using the general formula proved in homework 8 :

$$
\exp \left(i \frac{\theta}{2} \vec{\sigma} \cdot \vec{n}\right)=\cos \left(\frac{\theta}{2}\right) I+i \vec{\sigma} \cdot \vec{n} \sin \left(\frac{\theta}{2}\right)
$$

we obtain

$$
\begin{aligned}
\exp \left(-i \frac{\alpha}{2} \sigma_{x}\right) & =\cos \left(\frac{\alpha}{2}\right) I-i \sigma_{x}\left(\sin \left(\frac{\alpha}{2}\right)\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\alpha}{2}\right) & -i \sin \left(\frac{\alpha}{2}\right) \\
-i \sin \left(\frac{\alpha}{2}\right) & \cos \left(\frac{\alpha}{2}\right)
\end{array}\right), \\
\exp \left(-i \frac{\beta}{2} \sigma_{y}\right) & =\cos \left(\frac{\beta}{2}\right) I-i \sigma_{y}\left(\sin \left(\frac{\beta}{2}\right)\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\beta}{2}\right) & -\sin \left(\frac{\beta}{2}\right) \\
\sin \left(\frac{\beta}{2}\right) & \cos \left(\frac{\beta}{2}\right)
\end{array}\right),
\end{aligned}
$$

Figure 1 - Representation of basis vectors on Bloch Sphere

$$
\begin{aligned}
\exp \left(-i \frac{\gamma}{2} \sigma_{z}\right) & =\cos \left(\frac{\gamma}{2}\right) I-i \sigma_{z}\left(\sin \left(\frac{\gamma}{2}\right)\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\gamma}{2}\right)-i \sin \left(\frac{\gamma}{2}\right) & 0 \\
0 & \cos \left(\frac{\gamma}{2}\right)+i \sin \left(\frac{\gamma}{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-i \frac{\gamma}{2}} & 0 \\
0 & e^{i \frac{\gamma}{2}}
\end{array}\right)
\end{aligned}
$$

c) The matrix $\exp \left(-i \frac{\alpha}{2} \sigma_{x}\right)$ is a rotation matrix of angle α around the X-axis, thus the state vector $\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i \frac{\pi \pi}{2}} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle$ is transformed to the vector $\cos \left(\frac{\theta-\alpha}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta-\alpha}{2}\right)|\downarrow\rangle$. One can see the transformation geometrically on the Bloch sphere, however one can also show by direct calculation :

$$
\exp \left(-i \frac{\alpha}{2} \sigma_{x}\right)\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta}{2}\right)\right)|\downarrow\rangle=\cos \left(\frac{\theta-\alpha}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta-\alpha}{2}\right)|\downarrow\rangle .
$$

Similarly, one can see that $\exp \left(i \frac{\gamma}{2} \sigma_{z}\right)$ is a rotation of angle γ around the Z-axis. Therefore,

$$
\exp \left(-i \frac{\gamma}{2} \sigma_{z}\right)\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta}{2}\right)\right)|\downarrow\rangle=e^{-i \frac{\gamma}{2}}\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i\left(\frac{\pi}{2}+\gamma\right)} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle\right) .
$$

