
Solution 4
Quantum Information Processing

Exercise 1 Properties of Pauli matrices

a) We have :

A = a0I + a1σx + a2σy + a3σz =

(
a0 + a3 a1 − ia2
a1 + ia2 a0 − a3

)

Let A =

(
a11 a12
a21 a22

)
. One must have{

a0 + a3 = a11
a0 − a3 = a22

which implies a0 =
a11 + a22

2
et a3 =

a11 − a22
2

. On the other hand one must have :{
a1 − ia2 = a12
a1 + ia2 = a21

which implies a1 =
a12 + a21

2
et a2 =

a21 − a12
2i

.
Thus 2× 2 matrices A can be written as :

A =
a11 + a22

2
I +

a12 + a21
2

σx +
a21 − a12

2i
σy +

a11 − a22
2

σz.

Note that if A = A†, since σx = σ†
x, σy = σ†

y, σz = σ†
z, one must also have a0, a1, a2,

a3 ∈ R.

b) These relations are checked by explicit calculation. Note that they are related by cyclic
permutations of xyz.

c) Idem

d) Diagonalization of σx.(
0 1
1 0

)(
v1
v2

)
= λ

(
v1
v2

)
=⇒

{
v1 = λv2
v2 = λv1

⇒ v1 = λ2v1 and v2 = λ2v2. To have v1, v2 ̸= 0 it must be that λ2 = +1 and thus λ = ±1.
The eigenvalues are ±1.
The eigenvector corresponding to λ = +1 satisfies
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v1 = v2 et v2 = v1.

⇒ 1√
2

(
1
1

)
is a normalized eigenvector

The eigenvector associated to λ = −1 satisfies :

v1 = −v2 et v2 = −v1.

⇒ 1√
2

(
1
−1

)
is a normalized eigenvector

Diagonalization of σy.
We proceed as above :

det

(
−λ −i
i −λ

)
= λ2 − (−i)(i) = λ2 − 1 = 0 ⇒ λ = ±1

The eigenvector associated to λ = +1 satisfies(
0 −i
i 0

)(
v1
v2

)
= +1

(
v1
v2

)
⇒

{
−iv2 = v1
iv1 = v2

One can choose v1 = 1 et v2 = i

⇒ 1√
2

(
1
i

)
is a normalized eigenvector.

For the eigenvector associated to −1 we have :(
0 −i
i 0

)(
v1
v2

)
= −1

(
v1
v2

)
⇒

{
−iv2 = −v1
iv1 = −v2

We choose v1 = 1 et v2 = −i

Thus 1√
2

(
1
−i

)
is a normalized eigenvector.

Diagonalization of σz.

σz =

(
1 0
0 −1

)
in the basis

(
1
0

)
et

(
0
1

)
.

Thus 1 is the eigenvalue associated to
(
1
0

)
and −1 the eigenvalue associated to

(
0
1

)
.

Trace. The trace of a matrix is the sum of diagonal elements and is invariant under change
of basis. It is also the sum of eigenvalues. One can check that every thing is consistent
Tr σx = Tr σy = Tr σz = 0.
Determinant. The determinant equals a11a22 − a12a21 and is also invariant under change
of basis. It is also the product of eigenvalues. One can again check that everything is
consistent det σx = det σy = det σz = −1.

2



e) In Dirac notation a 2× 2 matrix becomes :

A =

(
a11 a12
a21 a22

)
= a11 |↑⟩ ⟨↑|+ a12 |↑⟩ ⟨↓|+ a21 |↓⟩ ⟨↑|+ a22 |↓⟩ ⟨↓| .

We also remark the important relations :

⟨↑|A |↑⟩ = a11; ⟨↑|A |↓⟩ = a12; ⟨↓|A |↑⟩ = a21 et ⟨↓|A |↓⟩ = a22.

We note

|↑⟩ ⟨↑| =
(
1 0
0 0

)
; |↑⟩ ⟨↓| =

(
0 1
0 0

)
; |↓⟩ ⟨↑| =

(
0 0
1 0

)
et |↓⟩ ⟨↓| =

(
0 0
0 1

)
.

From which the expressions of Pauli matrices in Dirac notation follow.

Exercise 2 Exponentials of Pauli matrices

1.
n⃗ · σ⃗ = nxσx + nyσy + nzσz by definition

(n⃗ · σ⃗)2 = (nxσx + nyσy + nzσz) (nxσx + nyσy + nzσz)

= n2
xσ

2
x + n2

yσ
2
y + n2

zσ
2
z

+ nxnyσxσy + nynxσyσx

+ nxnzσxσz + nznxσzσx

+ nynzσyσz + nznyσzσy

=
(
n2
x + n2

y + n2
z

)
I = I

In the second equality we were careful to note that Pauli matrices do not commute..
In the third one we used the relation in point 2. In the last one we used that n⃗ is a
unit norm vector.
This identity implies (n⃗ · σ⃗)3 = n⃗ · σ⃗; (n⃗ · σ⃗)4 = I; etc...
Thus

exp(itn⃗ · σ⃗) =
+∞∑
k=0

(it)k

k!
(n⃗ · σ⃗)k

=
∑
k even

(it)k

k!
I +

{∑
k odd

(it)k

k!

}
(n⃗ · σ⃗)

Moreover

cos t =
∑
k even

(it)k

k!
et i sin t =

∑
k odd

(it)k

k!
(*)
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(Parenthesis : note that

eit = cos t+ i sin t thus :

∑
k pairs

(it)k

k!
+

∑
k impairs

(it)k

k!
= cos t+ i sin t,

changing t → −t we also have

∑
k pairs

(it)k

k!
−

∑
k impairs

(it)k

k!
= cos t− i sin t,

and adding or subtracting we find (∗).)
Finally we proved :

exp(itn⃗ · σ⃗) = (cos t)I + (i sin t)n⃗ · σ⃗

Exercise 3 Rotations on the Bloch sphere

A general vector can be written in the form cos
(
θ
2

)
|↑⟩+ sin

(
θ
2

)
eiϕ |↓⟩ in the Bloch sphere.

a) The eigenvectors for σz basis are |↑⟩ and |↓⟩, corresponding to (θ = 0, ϕ = 0) and
(θ = π, ϕ = 0), respectively.
The eigenvectors for σy basis are 1√

2
|↑⟩ + i√

2
|↓⟩ and 1√

2
|↑⟩ − i√

2
|↓⟩, corresponding to

(θ = π
2
, ϕ = π

2
) and (θ = π

2
, ϕ = −π

2
), respectively.

The eigenvectors for σx basis are 1√
2
|↑⟩ + 1√

2
|↓⟩ and 1√

2
|↑⟩ − 1√

2
|↓⟩, corresponding to

(θ = π
2
, ϕ = 0) and (θ = π

2
, ϕ = π), respectively.

The corresponding representation over the Bloch sphere is shown in Figure 1.
b) Using the general formula proved in homework 8 :

exp

(
i
θ

2
σ⃗ · n⃗

)
= cos

(
θ

2

)
I + iσ⃗ · n⃗ sin

(
θ

2

)
,

we obtain

exp
(
−i

α

2
σx

)
= cos

(α
2

)
I − iσx(sin

(α
2

)
)

=

(
cos

(
α
2

)
−i sin

(
α
2

)
−i sin

(
α
2

)
cos

(
α
2

) )
,

exp

(
−i

β

2
σy

)
= cos

(
β

2

)
I − iσy(sin

(
β

2

)
)

=

(
cos

(
β
2

)
− sin

(
β
2

)
sin

(
β
2

)
cos

(
β
2

) )
,
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Figure 1 – Representation of basis vectors on Bloch Sphere

exp
(
−i

γ

2
σz

)
= cos

(γ
2

)
I − iσz(sin

(γ
2

)
)

=

(
cos

(
γ
2

)
− i sin

(
γ
2

)
0

0 cos
(
γ
2

)
+ i sin

(
γ
2

))
=

(
e−i γ

2 0

0 ei
γ
2

)
.

c) The matrix exp
(
−iα

2
σx

)
is a rotation matrix of angle α around the X-axis, thus the state

vector cos
(
θ
2

)
|↑⟩+ei

π
2 sin

(
θ
2

)
|↓⟩ is transformed to the vector cos

(
θ−α
2

)
|↑⟩+ei

π
2 sin

(
θ−α
2

)
|↓⟩.

One can see the transformation geometrically on the Bloch sphere, however one can also
show by direct calculation :

exp
(
−i

α

2
σx

)(
cos

(
θ

2

)
|↑⟩+ ei

π
2 sin

(
θ

2

))
|↓⟩ = cos

(
θ − α

2

)
|↑⟩+ ei

π
2 sin

(
θ − α

2

)
|↓⟩ .

Similarly, one can see that exp
(
iγ
2
σz

)
is a rotation of angle γ around the Z-axis. Therefore,

exp
(
−i

γ

2
σz

)(
cos

(
θ

2

)
|↑⟩+ ei

π
2 sin

(
θ

2

))
|↓⟩ = e−i γ

2

(
cos

(
θ

2

)
|↑⟩+ ei(

π
2
+γ) sin

(
θ

2

)
|↓⟩

)
.
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