Homework 4

Quantum Information Processing

Exercise 1 Properties of Pauli matrices

We collect useful properties of Pauli matrices. Let $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ a vector formed by the 3 Pauli matrices :

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The identity matrix is denoted $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
a) Show that all 2×2 matrices, A, can be written as a linear combination of I and σ_{x}, σ_{y}, σ_{z} :

$$
A=a_{0} I+a_{1} \sigma_{x}+a_{2} \sigma_{y}+a_{3} \sigma_{z}
$$

This can also be written as $A=a_{0} I+\vec{a} \cdot \vec{\sigma}$ where $\vec{a} \cdot \vec{\sigma}$ is an "inner product" between the "vectors" $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ et $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$.
Check also that if $A=A^{\dagger}$ we have $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$.
b) Check the following algebraic identities :

$$
\begin{aligned}
& \sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=I \\
& \sigma_{x} \sigma_{y}=i \sigma_{z} \\
& \sigma_{y} \sigma_{z}=i \sigma_{x} \\
& \sigma_{z} \sigma_{x}=i \sigma_{y}
\end{aligned}
$$

Deduce

$$
\begin{aligned}
\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{x} & =0 \\
\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{y} & =0 \\
\sigma_{z} \sigma_{x}+\sigma_{x} \sigma_{z} & =0
\end{aligned}
$$

c) Let $[A, B]=A B-B A$ be the "commutator". Show (you may use preceding results)

$$
\begin{aligned}
& {\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}} \\
& {\left[\sigma_{y}, \sigma_{z}\right]=2 i \sigma_{x}} \\
& {\left[\sigma_{z}, \sigma_{x}\right]=2 i \sigma_{y}}
\end{aligned}
$$

These relations are called "commutation relations for spin".
d) Compute eigenvalues and eigenvectors of $\sigma_{x}, \sigma_{y}, \sigma_{z}$. Check that the eigenvalues satisfy $\operatorname{Tr} \sigma_{x}=\operatorname{Tr} \sigma_{y}=\operatorname{Tr} \sigma_{z}=0$ et $\operatorname{det} \sigma_{x}=\operatorname{det} \sigma_{y}=\operatorname{det} \sigma_{z}=-1$.
e) Dirac notation : set

$$
|\uparrow\rangle=\binom{1}{0} \text { et }|\downarrow\rangle=\binom{0}{1}
$$

Check that

$$
\begin{aligned}
\sigma_{z} & =|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow| \\
\sigma_{x} & =|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow| \\
\sigma_{y} & =i|\downarrow\rangle\langle\uparrow|-i|\uparrow\rangle\langle\downarrow|
\end{aligned}
$$

Exercise 2 Exponentials of Pauli matrices
a) We define the exponential of a matrix A by (for $t \in \mathbb{R}$)

$$
e^{t A}=\sum_{n=0}^{\infty} \frac{t^{n} A^{n}}{n!}=I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\ldots
$$

We want to prove the identity :

$$
e^{i t \vec{n} \cdot \vec{\sigma}}=I \cos t+i \vec{n} \cdot \vec{\sigma} \sin t
$$

where \vec{n} is a unit vector and $t \in \mathbb{R}$. Remark that this is a generalization of Euler's identity :

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

To show the identity show first that:

$$
(\vec{n} \cdot \vec{\sigma})^{2}=I
$$

Use Taylor expansions of $\cos t$ and $\sin t$ to deduce the wanted identity above.
b) Explicitly write 2×2 matrices (in component/array form) $\exp \left(i t \sigma_{x}\right) ; \exp \left(i t \sigma_{y}\right) ; \exp \left(i t \sigma_{z}\right)$ as well as $\exp (i t \vec{n} \cdot \vec{\sigma})$.

Exercise 3 Rotations on the Bloch sphere

a) Represent the eigenvectors of σ_{x}, σ_{y} et σ_{z} on the Bloch sphere.
b) Calculate explicitly the matrices $\exp \left(-i \frac{\alpha}{2} \sigma_{x}\right), \exp \left(-i \frac{\alpha}{2} \sigma_{y}\right), \exp \left(-i \frac{\alpha}{2} \sigma_{z}\right)$.
c) Consider the qubit $|\psi\rangle=\left(\cos \frac{\theta}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}}\left(\sin \frac{\theta}{2}\right)|\downarrow\rangle$. Calculate the action of the matrices $\exp \left(-i \frac{\gamma}{2} \sigma_{z}\right), \exp \left(-i \frac{\alpha}{2} \sigma_{x}\right), \exp \left(-i \frac{\beta}{2} \sigma_{y}\right)$ on this vector. Represent the "trajectory" as a function of α on the Bloch sphere.

