Homework 4 Quantum Information Processing

Exercise 1 Properties of Pauli matrices

We collect useful properties of Pauli matrices. Let $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ a vector formed by the 3 Pauli matrices :

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The identity matrix is denoted $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

a) Show that all 2 × 2 matrices, A, can be written as a linear combination of I and σ_x , σ_y , σ_z :

$$A = a_0 I + a_1 \sigma_x + a_2 \sigma_y + a_3 \sigma_z.$$

This can also be written as $A = a_0 I + \vec{a} \cdot \vec{\sigma}$ where $\vec{a} \cdot \vec{\sigma}$ is an "inner product" between the "vectors" $\vec{a} = (a_1, a_2, a_3)$ et $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$.

Check also that if $A = A^{\dagger}$ we have $a_0, a_1, a_2, a_3 \in \mathbb{R}$.

b) Check the following algebraic identities :

$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = I$$

$$\sigma_x \sigma_y = i\sigma_z$$

$$\sigma_y \sigma_z = i\sigma_x$$

$$\sigma_z \sigma_x = i\sigma_y$$

Deduce

$$\sigma_x \sigma_y + \sigma_y \sigma_x = 0$$

$$\sigma_y \sigma_z + \sigma_z \sigma_y = 0$$

$$\sigma_z \sigma_x + \sigma_x \sigma_z = 0$$

c) Let [A, B] = AB - BA be the "commutator". Show (you may use preceding results)

$$\begin{split} [\sigma_x, \sigma_y] &= 2i\sigma_z \\ [\sigma_y, \sigma_z] &= 2i\sigma_x \\ [\sigma_z, \sigma_x] &= 2i\sigma_y \end{split}$$

These relations are called "commutation relations for spin".

- d) Compute eigenvalues and eigenvectors of σ_x , σ_y , σ_z . Check that the eigenvalues satisfy $\operatorname{Tr} \sigma_x = \operatorname{Tr} \sigma_y = \operatorname{Tr} \sigma_z = 0$ et $\det \sigma_x = \det \sigma_y = \det \sigma_z = -1$.
- e) Dirac notation : set

$$|\uparrow\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 et $|\downarrow\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

Check that

$$\begin{split} \sigma_{z} &= \left|\uparrow\right\rangle\left\langle\uparrow\right| - \left|\downarrow\right\rangle\left\langle\downarrow\right| \\ \sigma_{x} &= \left|\uparrow\right\rangle\left\langle\downarrow\right| + \left|\downarrow\right\rangle\left\langle\uparrow\right| \\ \sigma_{y} &= i\left|\downarrow\right\rangle\left\langle\uparrow\right| - i\left|\uparrow\right\rangle\left\langle\downarrow\right| \end{split}$$

Exercise 2 Exponentials of Pauli matrices

a) We define the exponential of a matrix A by (for $t \in \mathbb{R}$)

$$e^{tA} = \sum_{n=0}^{\infty} \frac{t^n A^n}{n!} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \dots$$

We want to prove the identity :

$$e^{it\vec{n}\cdot\vec{\sigma}} = I\cos t + i\vec{n}\cdot\vec{\sigma}\sin t$$

where \vec{n} is a unit vector and $t \in \mathbb{R}$. Remark that this is a generalization of Euler's identity :

$$e^{i\theta} = \cos\theta + i\sin\theta$$

To show the identity show first that :

$$(\vec{n}\cdot\vec{\sigma})^2 = I$$

Use Taylor expansions of $\cos t$ and $\sin t$ to deduce the wanted identity above.

b) Explicitly write 2×2 matrices (in component/array form) $\exp(it\sigma_x)$; $\exp(it\sigma_y)$; $\exp(it\sigma_z)$ as well as $\exp(it\vec{n} \cdot \vec{\sigma})$.

Exercise 3 Rotations on the Bloch sphere

- a) Represent the eigenvectors of σ_x , σ_y et σ_z on the Bloch sphere.
- b) Calculate explicitly the matrices $\exp\left(-i\frac{\alpha}{2}\sigma_x\right)$, $\exp\left(-i\frac{\alpha}{2}\sigma_y\right)$, $\exp\left(-i\frac{\alpha}{2}\sigma_z\right)$.
- c) Consider the qubit $|\psi\rangle = (\cos\frac{\theta}{2})|\uparrow\rangle + e^{i\frac{\pi}{2}}(\sin\frac{\theta}{2})|\downarrow\rangle$. Calculate the action of the matrices $\exp(-i\frac{\gamma}{2}\sigma_z)$, $\exp(-i\frac{\alpha}{2}\sigma_x)$, $\exp(-i\frac{\beta}{2}\sigma_y)$ on this vector. Represent the "trajectory" as a function of α on the Bloch sphere.