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Solutions to Problem Set 3

Exercise 1 - Plasma production

a) The definition of relative degree of ionization is

α =
ne

ne + nAr

where nAr = NAr/V is the density of neutral Argon atoms (number of Ar atoms per
m3). To evaluate nAr we can use the ideal gas law:

pAr = nAr kB TAr (1)

where pAr is the pressure of Argon inside the vacuum chamber in Pascal, kB = 1.38×
10−23 J/K is the Boltzmann constant and TAr is the temperature of the Argon gas in
Kelvin (normally assumed to be at room temperature - 298 K). Inverting this equation
for nAr one finds that

nAr =
pAr

kB TAr

(2)

In order to use this expression one needs to convert the pressure given in Torr to Pascal
using 760 Torr = 1.01× 105 Pa. Then pAr = 1.33× 10−2 Pa. Thus, the neutral Argon
number density nAr is

nAr = 3.23× 1018m−3 (3)

The degree of ionization with ne = 1× 1016 m−3 and nAr = 3.23× 1018m−3 is

α =
ne

ne + nAr︸ ︷︷ ︸
≈ nAr

=
1× 1016

1× 1016 + 3.23× 1018
≈ 3.08× 10−3
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b) The electron-neutral collision frequency is

νen = nAr σn vrel

where vrel is the relative velocity between electrons and neutrals and σn = 103 π a20 is
the collision cross-section. Since me ≪ mAr and Te ≫ T0, we can assume vrel ≃ ve.

In general, νen is a function of the electron velocity and, implicitly, σn = σn(ve). In
our problem, we can consider σn constant and a typical velocity of the electrons equal

to their thermal velocity vthe =
√

e Te

me
.

Plugging these numbers in the expression above we find:

νen = 3.23× 1018 m−3 · 103 π (5.29× 10−11)2︸ ︷︷ ︸
a20

m2 ·
√

e Te

me

m

s
≈ 2.06× 107 s−1

c) Can we consider this gas to be a plasma?

• The Debye length is:

λD =

√
ε0 Te

e2 ne

≈ 7430

√
Te[eV]

ne [m−3]
= 7430

√
3

1016
m = 0.13 mm

The ionized gas is confined in a container of dimension Lp ≈ 0.5m ≫ 0.13mm.
We see then that Lp ≫ λD is required for a plasma.

• ND = 4
3
π λ3

D ne ≈ 9.2 × 104 ≫ 1, so the condition of the plasma parameter
g = N−1

D ≪ 1 is verified.

• To see dynamic collective effects in a plasma (oscillations at the frequency ωp),
we need ωp to be much larger than the collision frequency:

ωp =

√
e2 ne

me ε0
≈ 18π

√
ne [m−3] rad/s = 18π

√
1016 rad/s = 5.7× 109 rad/s

To compare ωp with νen we need to convert it in s−1:

fp =
ωp

2π
≈ 0.9× 109 s−1 > νen = 2.06× 107 s−1

We can therefore conclude that this ionized gas is a plasma.
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Exercise 2 - Mirror effect

a) In an ideal solenoid, the field lines would be straight and uniform through the ring-
shaped conductors, creating a consistent magnetic field within the solenoid. However,
due to the finite distance between the two coils, the field lines will diverge after passing
through the first ring, spreading out slightly in the space between the coils, and then
reconverging as they enter the second ring. This divergence creates a weaker magnetic
field in the central region and a stronger field near the coils. This divergence and
reconvergence of the field lines result in a non-uniform magnetic field between the
coils, which can affect the overall field strength and distribution.

b) The field will be strongest at the location of the coils, and weaker in the middle. This
variation in field strength is due to the concentration of magnetic field lines near the
coils. This is because the magnetic field lines are more concentrated near the coils,
leading to a higher field strength in these regions. Far to the left and right of the coils,
the field will decay approximately as 1/r3, similarly as for a magnetic dipole.

Figure 1: Field lines and field strength in a magnetic mirror.

c) A particle with velocity only along the axis will feel no force because it moves parallel to
the magnetic field. It will continue undisturbed along its path. The particle’s motion
is unaffected because the magnetic field exerts no force on charges moving parallel to
it.

d) Denote the minimum magnetic field strength halfway between the coils as B0 and the
maximum field strength at each coil as B1. Conservation of kinetic energy gives

1

2
mv2||,0 +

1

2
mv2⊥,0 =

1

2
mv2||,1 +

1

2
mv2⊥,1

Conservation of the adiabatic invariant, which states that the magnetic moment is
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Figure 2: Loss cone of a particle in a magnetic mirror.

conserved in a slowly varying magnetic field, gives

mv2⊥,0

B0

=
mv2⊥,1

B1

Using this result, one can substitute for v2⊥,1 to obtain

1

2
mv2||,0 +

1

2
mv2⊥,0

(
1− B1

B0

)
=

1

2
mv2||,1

Since B1 > B0, the second term on the left-hand side is negative. If B1 is large
enough, then this term will cancel the first term, meaning that v||,1 can become zero.
This indicates that the parallel component of the velocity is completely converted into
perpendicular velocity, meaning that the particle can be reflected back, which is the
basis of magnetic mirror confinement.

e) If a particle is reflected, there must be a point on its trajectory where v||,1 = 0.
Rearranging the expression found in (d), we get

1

2
mv2||,0 +

1

2
mv2⊥,0 =

B1

B0

1

2
mv2⊥,0 (4)

v2||,0 + v2⊥,0

v2⊥,0

=
B1

B0

(5)

sin2 θc =
B0

B1

(6)

Here, θc is the critical angle on the (v||,0, v⊥,0) plane (see Fig. 2). The zone where θ < θc,
corresponding to small perpendicular velocities, is referred to as the loss cone of the
velocity distribution. Particles with velocity components within this loss cone at the
midplane will not be trapped in the magnetic mirror and will escape the confinement.

The loss cone is one of the fundamental reasons why achieving fusion based on mag-
netic mirrors is difficult. For effective confinement, we would like particles to have
a high perpendicular velocity, which helps keep them within the mirror. However,
due to collisions within the plasma, particles will gradually acquire a parallel velocity
component as well, pushing them into the loss cone and allowing them to escape from
the mirror confinement.
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Exercise 3 - Confinement by a toroidal field

a) Ampère’s law in integral form reads∮
C

B ·dℓ = µ0

∫∫
S

j ·dS = µ0I

This is valid for any contour containing the current-carrying wire. Due to the cylindri-
cal symmetry, if we choose the contour as a circle centered at the wire, B is constant
along the integration path. Therefore,

B

∮
C

dℓ = 2πrBθ = µ0I

Bθ =
µ0I

2πr

Clearly, the field strength decreases as 1/r.

Using Ampère’s law in differential form (in cylindrical coordinates), we get a similar
result:

(∇×B)z =
1

r

[
∂

∂r
(rBθ)−

∂Br

∂θ

]
= 0

We immediately remove terms involving ∂/∂θ because of symmetry.

1

r

∂

∂r
(rBθ) = 0

rBθ = k

Bθ =
k

r

with k being the appropriate constant of integration. In this case, as well, we see that
the field strength decreases as 1/r.

The gradient of the magnetic field strength is easy to compute since the only component
is Bθ, which depends only on r.

∇B =
d

dr
Bθ(r) r̂

=
d

dr

(
µ0I

2πr

)
r̂

= − µ0I

2πr2
r̂

As expected, the gradient is oriented in the −r̂ direction.

b) We can now evaluate the direction of the various drifts. The∇B drift is in the direction
of ∓B×∇B for electrons and ions, respectively. The curvature drift has the direction
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Figure 3: Toroidal B field created by a current-carrying wire. The ∇B-drift (which is
opposite for electrons and ions) causes charge separation, which creates an electric field.
The resulting E ×B drift drives the bulk of the plasma outwards.

∓Rc × B for electrons and ions, respectively. Since ∇B and Rc are opposite, both
drifts will have the same effect: they will cause ions to drift upwards and electrons to
drift downwards.

This charge separation will result in an electric field in the −ẑ direction: E = −E ẑ.
The presence of this electric field leads to the E × B drift, which is oriented in the
outward radial direction for both ions and electrons. Consequently, this outward drift
pushes the bulk of the plasma away from the center, causing the plasma to escape.
This is the fundamental reason why it is not possible to confine a plasma in a simple
toroidal field.

Note: In a Tokamak, this problem is solved by driving a current through the plasma.
The resulting poloidal magnetic field will add to the toroidal field, producing helically
twisted field lines which periodically visit both the top and bottom parts of the plasma.
This provides a path for the particles to counteract the charge separation, thus “short-
circuiting” this instability.
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