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Plasma state and collective effects

Definition of a plasma

Plasma production by ionisation

Collective effects: Debye screening and the plasma frequency

Models for a general description of plasmas

Single particle motion
Motion of charged particles in electric and magnetic fields

e By, E =0 (Larmor motion, diamagnetism)
o By, Eo (E x B drift)
e B(x), variation across B, E = 0 (grad B and curvature drifts)

e B(x), variation along B, E =0 (mirror effect)

Suggested additional reading

a) A.Fasoli, Plasma Physics Il Lecture Notes, Chapters 1 and 2, and
Appendix A (https://crppwww.epfl.ch/physplas2/repository/2011/Fasoli _Plasmasll.pdf)

b) J.Freidberg's book, Chapter 8 (8.1-8.7 and 8.9-8.10)



1 The plasma state

What is a plasma 7 “An ionised, quasi-neutral gas, exhibiting collective effects”

1.1 “lonised”

Result of the process of ionisation. In most cases of interest to us for fusion, impact
ionisation is the dominant process (Fig. 1 & Fig. 2):
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Fig. 1: lonisation process Fig. 2: lonisation cross section

For a plasma to be in equilibrium, there has to be the same number of ionisations and re-
combination events.

Recombination: In fusions plasmas it will be dominated by “radiative” recombination, illus-
trated in Fig. 3 and Fig. 4.
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Fig. 3: Recombination process Fig. 4. Recombination cross section
The equilibrium is given by:
Ne < OrecVe > = Np < TionVe > <>= average over distribution function

T T

'targets’ are not the same for the two processes !
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Note 3.1.1: This equation sets an equality between the frequencies at which ionisation and
recombination processes occur, hence an equilibrium.

A very simple equilibrium is that of the solar corona (between impact ionisation and radiative
recombination). A global thermodynamical equilibrium is described by the Saha equation:

Ne 07 T3/2 [eV] E;
Nn 310 n; [ 73] eXp{ T}

where:

Te - 7—I:Tn:T

E; = ionisation energy

Ne

and defining o = the relative degree of ionisation :

Ne+np
1
a =
14 —mesT
3-1027 T3/2
This relation is presented in Fig. 5.
Saha equation — E;{=13.6eV,n, 10% m 3
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Fig. 5: Relative degree of ionisation a as a function of temperature.

The sharp transition from exponential signals a “phase transition” which defines the plasma
as the 4% state of matter.

Various plasmas

Ex. 1: Air (~Np, Ej =145¢V), T ~1/40 eV, n, = 10® m—3, e ~a~ 107720~ 0 !

Ex. 2 : Solar corona T ~ 500 eV, ne ~ 1083 m3 = a~1
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1.2 “Globally neutral” (‘quasi-neutrality’)

A globally neutral plasma refers to a state where n. =~ n; at least on average (both spatially
and temporally). In the exercises you have demonstrated ‘quantitatively’ how difficult it is
to violate quasi-neutrality.

Naturally, if we look at a microscopic level, this neutrality will be violated, for e.g., if we
approach an individual ion. So, the question is, how close should we be to the single charge
to feel its field 7

This question leads us to the 3" aspect of the definition of a plasma : collective effects.

1.3 ‘“Collective effects”

1.3.1 Static: charge (or potential) screening
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Fig. 6: An extra ion is inserted into a plasma

Insert an extra positive charge (fig. 6):

e What is the potential around the extra positive charge?
e How does the density of electrons change around it?

e Up to which distance will the perturbation caused by the extra positive charge be felt?

Solution in a simple situation:

T; = 0 (ions don't move); n; = ng, and ne = ng for r — oo

The electrons are distributed according to the Maxwell-Boltzmann : ne = ng exp{—@} =
no exp{ <42}

The perturbation is small [quasi-neutrality !] : 2 <1

Singly ionised ions (g; = +e)
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Starting from Maxwell’s equations, we have the relation for the divergence of the electric
field E:

Povy=-12
€0 €0

V-E:

Next, we express the charge density p in terms of the ion and electron densities n; and ne:

p = e(nj—ne)

Assuming a globally neutral plasma in equilibrium, we have n; ~ ng (where ng is the equi-
librium density of ions), and the electron density ne can be expressed using the Boltzmann
distribution:

ne = nge®®/T

For small perturbations in potential ¢, we can approximate the exponential function using a
Taylor series expansion around ¢ = O:

e +T

Substituting this into the expression for p, we get:

2
p = eny (1—ee¢/T>zeno <1_1_e7<_1>> :—2(15

This showszthat the charge density p is proportional to the potential ¢ with a proportionality
constant <2,

Substituting this result back into our modified Poisson equation:

2

1Y €"No
Vip=-—-2="—
¢ €0 el

This is a differential equation describing the behavior of the electric potential in a plasma.
We can highlight this important result:

2
v ¢ N 807_ ¢

e2ng

-1
Note 3.1.2 : <\/‘§i’$> has dimensions of length. Define Ap = /<% “Debye length”.
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Note 3.1.3: In spherical coordinates, there is only an r dependence (problem is spherically
symmetric).
10 0
2 - 2 27
Vo= r2 or <r 6r>
Substitute
u(r) = ¢(nr
This yields
100 o (1 1 10U
or = 6‘r<ru(r)> =Vt
10 1 10U 10 ou 1 ou 8uU  8°U
2, 10 o 1 1ou _ 9] evr_+t) oy ov oU
vqﬁ_rzfﬂr{r [ r2U+r8r}} r28r{ U+r8r} r2{ 6r+6r+r8r2}

1y _ua (170 U1
ror T ra? X 0r2 X A3

We have defined the Debye length:

ol <« thermal motion makes shielding difficult
>\D = o . .
e2n <« space charge helps shielding

Solution :

U(r) = Ae "o 4 Bel/?o

—r/Ap r/Ap
or ¢(r) = Ae p +Be

P
Boundary conditions :
o(r) =0 = B=0
r—0 €
(1) 4egr 4meo
single particle potential
Density :
e =m0+ ) = d 1t & oo
e\l) = 7o T 0 AmeoT r

>0 as expected

there are slightly more electrons around the positive charge, but this extra electron density
goes to 0 as r — oo, with Ap as the exponential decay length
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1
= ¢(r): eof.e_r/AD

where e~"/2p is the term due to plasma collective interactions.
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1
=
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Fig. 7: Comparison of the potential ¢(r) in vacuum (%) and in a plasma (%e_r“D), showing
the effect of Debye shielding which causes the potential to decay exponentially beyond the
Debye length.

Note 3.1.4: In order for this effect to happen, i.e. for the plasma to exhibit collective effects,
we must have:

e enough particles within the sphere with radius equal to Ap : Np = %’IT)\%HO >1

e plasma size > A\p

1.3.2 Dynamical effect - Plasma Oscillations

By combining the characteristic velocity (v = ‘/r%) and length (A\y), we can find a char-
acteristic time (or frequency) for the plasma response to local violation of quasi-neutrality

1 v €2ne
T AD €0Me

This is the plasma frequency. Numerically :

f, = ‘2"7’; ~ 9000+/n [cm—3] Hz

Moreover, a discharge can be considered plasma if wp > Veoriision-

Note 3.1.5: To propagate a wave in a simple plasma (no B-field) one should have w > w,.




2 General problem of plasma description

Electric and magnetic
fields (E, B)

Positions and Charge and current
velocities (X;, V;) densities (p,])

Fig. 8: “Typical self-consistent loop which appears in models of plasma physics. The positions
and velocities of particles (x;, v;) determine the charge and current densities (p, J), which in
turn generate the electric and magnetic fields (E, B). These fields influence the particles’
positions and velocities, completing the feedback loop.”

How to combine the three steps 7 We need a model to describe the plasma.

Three models :

orbits

1. Single particle (eq. of motion) { magnetic confinement

transport

2. Kinetic Boltzmann (Vlasov) L .
wave-particle interactions

. . o -stabilit ilibri
3. Fluid (eq. motion, continuity, eq. of state) { macro-stability (equilibrium)
waves
Today we discuss the single-particle model, in particular step A of Fig.8, i.e. how E, B affect
particle motion.

Eq. of motion (non relativistic) :

dv x(t) _ E(x, t)
ma =q(E+vxB)+Fer = { V(D) for given { B(x, 1)
As a plasma is made up of charged particles, it is interesting to study the behavior of such
particles under various configurations of electromagnetic fields. Different important cases
will be considered in the following:

1. B=Bp; E=0 Larmor motion (diamagnetism)
2. B=By: E=E “E x B drift”
3.B=B(x); E=0 “VB" and curvature drift

with VB L B (variation across B)
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4. B=B(x);E=0
with VB || B (variation along B) — magnetic mirror

Naturally, there exist other, more complicated situations, but the main aspects are captured
in the four simple cases illustrated here.

2.1 By uniform, no E

V]

® By

Fig. 9: Circular motion

.y pL = 9)
—L =mp % =|glviBy — (from laws of circular motion, v, = pQ)
L o - 9l Bo
m

Numerical values :

Fo Q[ el 28x B[T] [GHZ] ex : ITER fo ~ 170 GHz
~2m | ions 15.2% x B[T] [MHz] ex: ITER f; ~ 50 MHz
el. 10_47";[[1??\/] [m] (ex : 10 keV, B=3T — p;, =~ 0.1 mm)
_i_

ions 5- 10*37”;5[[?]\/] % [m] (ex: 10 keV, B=3T, H-ions — p;, >~ 7mm)

Note 3.2.1: from our “design of a reactor” study we know that B ~ 5T, plasma radius
>> 7mm so these values are ok.
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Note 3.2.2:
e Energy is conserved (force is L to v : nowork !) NB : we neglect losses by radiation
e Parallel and perpendicular motion are decoupled (with respect to By)

e In perpendicular plane, the trajectory of the particle is a circle of radius p; (Larmor
radius): this is a cyclotron motion, with frequency Q2

Note 3.2.3: sign of gyro-motion gives reduction of By : diagmagnetism [remember : this
is why B = 82/2u < 1]

2.2 Bj and E; uniform

As we did before, we project the movement along parallel and perpendicular directions with
respect to the magnetic field:

{ vi(t) = vjo+ 5Eot (nothing special)

. dyv
motion : m-t = gE
I at = 9E| z(t) = z0+ vt + 3 LEet?

1 motion : sketch for Eg L By :

T = qE
lons acquire
energy going up:
drift
larger pr, on top

deceleration
smallerpr, at bottom

Eq

Fig. 10: Motion of ions in a constant magnetic field By and a perpendicular electric field Eg.
The ions have a helical motion due to the Lorentz force, which results in a drift perpendicular
to both fields. As shown in the diagram, the ions accelerate upwards when moving with the
electric field, resulting in a larger Larmor radius p; at the top of the trajectory and decelerate
when moving against the electric field, resulting in a smaller p; at the bottom. This creates
a net drift motion.

And the same holds for electrons
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=

drift /W

Fig. 11: Motion of electrons in a constant magnetic field By and a perpendicular electric
field Eg. The electrons experience a helical motion due to the Lorentz force, resulting in a
drift perpendicular to both fields. The electrons accelerate in the direction opposite to the
electric field —Eq, resulting in a larger Larmor radius p; at the bottom of the trajectory and
decelerate when moving in the same direction as the electric field, resulting in a smaller p;
at the top. This creates a net drift motion similar to the ions but in the opposite direction
due to the opposite charge.

= Drifts to the left for both species.

How to calculate this steady-state drift ?

Definition: Let v, denote the solution of case B = By ; E =0 (Larmor motion)

We look for vq, such that Eg+vg x Bg = 0 ; in fact v, + v is the solution (v4 = constant).

d d
msY = q(Eo +v x Bp); but v, : mek = qvi x Bg

dt dt
dv dv
m—L—l—m—d:qu—i—qu X Bg 4+ qvg X Bg
dt dt
So, we need to solvel ’Eo +vg x Bg = O‘ (xByg)

E0XBo+(VdXBo)XBOZO = EoXBo—F(Vd'Bo)Bo—Vng:O
—_———

Il to Bo
L motion (the one we are interested in) :
EO X BO
Eo x By = leBg = Vg, =VExB = 878 (2.1)

— "E cross B drift” (of “guiding center”) as expected from sketch. The overall motion in this
configuration is hence given by a Larmor motion but with a shift caused by the drift velocity
induced by the electric field.

l'(axb)xc=(cxb)xa=(a-c)b—(a-b)c
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12
Note 3.2.4:
e v, is independent of charge, m, v.
e same for ions, electrons — no current, no charge separation
Generalisation of veypg
Instead of gEg, we can put any force Feyt = gEq, or Eg = %
Fext/q X Bog _ Mext/q X Bg
= Vp = GXT ex : gravity : vg = GXT (2.2)
0 0

this leads to charge separation.

Note 3.2.5: If Fe, does not contain the charge, then the drift does depend on the charge;

2.3 B(x) and E = 0, with VB 1 B (variation across B)

Consider two limiting cases :

(3a) |B| changes, but not the direction

(3b) only the direction of B changes (B/|B| changes along B)

(3a)

Fig. 12: |B| increases with y (vertically)

The calculation is complicated, but if the variations are not too fast (in space and in time),

Larmor motion

we can always decompose the motion into . o
y P { drift of the guiding center
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Conditions :
L, = ‘V B‘ > p; the variation occurs over distances larger than p;
1
27
Ly vE VY
Il N
space covered in one Larmor orbit
. 1 0B
time ‘B Gt’ < Q
Sketch :

B
O]
VB 75
higher |B| /Wv

thinner orbit Drift should be to the

smaller |Bj| left  for ions
fatter orbit right for electrons

? v~ gB x VB

Fig. 13: Motion of ions (upper) and electrons (lower).
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Precise calculation gives in fact

1 B xVB .
Vg = %mviT = Vyg “grad B drift”

Note 3.2.6: The drift velocity vy g depends on g, and thus induces:
= current

= charge separation

(3b) Variation in direction of B

Fig. 14: Sketch of the trajectory of two charges of different signs in a region of magnetic
field curvature

The guiding center 'feels’ a centrifugal force. Noting R the radius of curvature, we have :
2
i

R
Fgc = mRicF\TZ = Fext

Recalling the general formula for the drift velocity generated by an external force Feyx (Eq.

2.2), we can write the “curvature drift” as :
1Y

Re 1 MV R, x B
\Y) = m— — =
curv qBQ Rc Rc q Rg B2

Case of vacuum fields (how to confine a plasma ?7)
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e Combine vyg and vy

: _ 1
e In vacuum (in cyl. coordinates) |B| o R—
so that ‘
ve 1
B R2°°
Fig. 15: Confining a plasma
So
1 BxVB 1 R, x B
total 2 2 Re
Vdoa TquJ‘T—i_amV” 827/?5_
1 LRexB 1 L,R.xB
= —MV] (=555 T —MV] —555
2¢  + B2R2 ' ¢ I B2R2
1, 2} 1R.xB
= |zmvi+mvy| — 5555
o e <
= if we average energy over distribution :
1
< Emvi >=T (2 degrees of freedom)
1 5 T
<gmy>=< (1 degree of freedom)
2T R x B
total _ c
~SVd T = T TgRr
Note 3.2.7:
® v and vy add up (unfortunately !)
e dependence on g — charge separation: ions and electrons drift in opposite directions
e Proportional to energy, no mass dependence
Magnitude :
2T 1 PL
< vtotal S| =22 = y—
< v > lal BRe ~ "Rc

Can we conclude anything about particle confinement ?

Simplest idea : particles move freely along B but not across : let's confine them in a toroidal
system (no beginning, no end).

We need a more complicated B-field structure to confine particles ! (— rotational transform,
tokamak, ...)
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T vietal for jons
What happens ?

[This is done in the exercices] l viotal for clectrons

= E x B outwards !

Fig. 16: E x B outwards = no confinement

2.4 B(x) and E = 0, with VB || B (variation of |B| along B)

VB B
2T

_|.e.
L”_’VHB‘ SN
~

space covered in one Larmor orbit

(to have Larmor motion)

Cylindrical coordinates (r, 0, z) :

e Bg=0— B, =B,(2)

e but B, # 0 (field lines are not exactly along z)

. cyl. coord. 1 g GBZ . Q . GBZ
V-B=0 = p ar(rBr) + 9 = 0 - ar(rBr) =-ra,
r 0B small distances 0B I’2 r 0B
— o Z=Z ~ _ Z _ ~ __ z
rBr = /0 ar (r 0z ) N < 0z r—O) > 7 Br 2 0z |,

Fig. 17: Description with cylindrical coordinates

Note 3.2.8: |B| =|B(r,z)] — B x VB drift is azimuthal (not important).
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We are interested in parallel motion.

Consider a particle whose guiding center lies on the z=0 axis : r ~ p;

_pL 9B,
2 0z

B, ~ {"little" B, produced by the fact that B varies with z}

which parallel force does this produce ?

Parallel force (with Bg =0 and vy = Fv, = —%VJ_)Z
q(vxB); = q(vBy—vwB;)=—q(FvL)B = +q|Z|VJ_Br
_ lglviB, ~lqlvy (P82 Z gy, M 1 OB:
= [qvVLbr=|q|VvL 2az_qL|q|B2az
~—~—
oL
~ 1vim 8B, 0B,
- 2B 8z M
——

L4 “magnetic moment” (corresponds to currentxarea)

So, both electrons and ions feel a force that tries to prevent them from moving towards
increasing field.

Eq. of motion (|| to B) :

M- = “HVI

This is a very useful form, as, in the conditions of interest here, u is conserved [*adiabatic
invariant”, i.e. constant if the changes in the system are slow (in time and space)].

. : : 1/2mv? . : .
W i1s constant along the particles motion : as u = %, if B increases, v| must increase.
But the total kinetic energy is constant, therefore Vi + VH2 = const, thus if v| increases,
v must decrease. This leads to an interesting situtation for confinement: the 'magnetic
mirror’.
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Magnetic mirror

strong B

weak B

Fig. 18: Magnetic mirror

m v”2

—— = Energy — uB
2
If B is large enough in the throat, vj — 0 and can change sign [both for ions and electrons]
The particles are hence “reflected” when they reach this region with large magnetic field.
This results in a confinement in the direction parallel to B.

Note 3.2.9: This is how particles are confined in Van-Allen belts in the Earths dipole field.

weak B

Fig. 19: Earth dipole field

[ions from thermonuclear explosions stay confined for many years ]

Note 3.2.10 : Magnetic mirrors were the first confinement schemes to be tested for fusion.
But they have a problem : not all particles are confined! E.g. : ifv, =0—>u=0— Fy=0.
One needs a large enough ratio vL/v”.

In the exercises today you'll evaluate this limit (“loss cone”).



