Nuclear Fusion and Plasma Physics

Prof. A. Fasoli - Swiss Plasma Center / EPFL

Lecture 3-09 October 2023

Plasma state and collective effects

- Definition of plasma
- Plasma production by ionisation
- Collective effects: Debye screening and the plasma frequency
- Models for a general description of plasmas

Single particle motion

Motion of charged particles in electric and magnetic fields

- $B_{0}, E=0$ (Larmor motion, diamagnetism)
- $B_{0}, E_{0}(E \times B$ drift $)$
- $B(x)$, variation across $B, E=0$ (grad B and curvature drifts)
- $B(x)$, variation along $B, E=0$ (mirror effect)

Suggested additional reading

A.Fasoli, Plasma Physics II Lecture Notes, Chapters 1 and 2, and

Appendix A (https://crppwww.epfl.ch/physplas2/repository/2011/Fasoli
Plasmasll.pdf)
J.Freidberg's book, Chapter 8 (8.1-8.7 and 8.9-8.10)

1 The plasma state

What is a plasma ? "An ionised gas, quasi-neutral, exhibiting collective effects"

1.1 "Ionised"

Result of the process of ionisation. In most cases of interest for us, for fusion, impact ionisation is the dominant process:

Fig. 1: Ionisation process

For a plasma to be in equilibrium, there has to be the same number of ionisations and recombination events.

Recombination : in our plasmas it'll be dominated by "radiative" recombination

$$
\text { Fig. 3: Recombination process } \text { Fig. 4: Recombination cross section }
$$

Fig. 3: Recombination process

The equilibrium is given by

$$
\begin{array}{ll}
n_{e}<\sigma_{\text {rec }} v_{e}>= & n_{n}<\sigma_{\text {ion }} v_{e}> \\
\uparrow & \uparrow
\end{array}
$$

'targets' are not the same for the two processes !

A very simple equilibrium is that of the solar corona (between impact ionisation and radiative recombination), for a global thermodynamical equilibrium \rightarrow Saha equation

$$
\begin{gathered}
\frac{n_{e}}{n_{n}} \approx 3 \cdot 10^{27} \frac{T^{3 / 2}[\mathrm{eV}]}{n_{i}\left[\mathrm{~m}^{-3}\right]} \exp \left\{-\frac{E_{i}}{T}\right\} \\
T_{e}=T_{i}=T_{n}=T \\
E_{i}=\text { ionisation energy }
\end{gathered}
$$

and defining $\alpha=\frac{n_{e}}{n_{e}+n_{n}}$ the relative degree of ionisation :

$$
\alpha=\frac{1}{1+\frac{n_{i} e^{E_{i} / T}}{3 \cdot 10^{27} T^{3 / 2}}}
$$

Fig. 5: α against temperature

Sharp transition from exponential \rightarrow "phase transition" \rightarrow plasma $\equiv 4^{\text {th }}$ state of matter Various plasmas

Ex. 1: $\operatorname{Air}\left(\sim N_{2}, E_{i}=14.5 \mathrm{eV}\right), T \sim 1 / 40 \mathrm{eV}, n_{n} \approx 10^{25} \mathrm{~m}^{-3}, \frac{n_{e}}{n_{n}} \sim \alpha \sim 10^{-120} \sim 0$!
Ex. 2 : Solar corona $T \sim 500 \mathrm{eV}, n_{e} \sim 10^{13} \mathrm{~m}^{-3} \Rightarrow \alpha \sim 1$

1.2 "Globally neutral" ('quasi-neutrality’)

$n_{e} \approx n_{i}$ at least on average (both spatially and temporally). In the exercise you have demonstrated 'quantitatively' how difficult it is to violate quasi-neutrality.

Naturally, if we look at a microscopic level, this neutrality will be violated, for e.g., if we approach an individual ion. So, the question is, how close should we be to the single charge to feel its field ?

This question leads us to the $3^{\text {rd }}$ aspect of the definition of a plasma : collective effects.

1.3 "Collective effects"

1.3.1 Static: charge (or potential) screening

Fig. 6: An extra ion is inserted

Solution in simple situation :

- $T_{i}=0$ (ions don't move); $n_{i}=n_{0}$, and $n_{e}=n_{0}$ for $r \rightarrow \infty$
- Electrons are distributed according to Maxwell-Boltzmann : $n_{e}=n_{0} \exp \left\{-\frac{\text { energy }}{T}\right\}=$ $n_{0} \exp \left\{\frac{e \phi(r)}{T}\right\}$
- Perturbation is small [quasi-neutrality !] : $\frac{e \phi}{T} \ll 1$
- singly ionised ions ($q_{i}=+e$)

$$
\nabla \cdot E=\frac{\rho}{\varepsilon_{0}} \Rightarrow \nabla^{2} \phi=-\frac{\rho}{\varepsilon_{0}}
$$

but

$$
\begin{gathered}
\rho=e\left(n_{i}-n_{e}\right)=e n_{0}\left\{1-e^{e \phi / T}\right\} \approx e n_{0}\left\{1-1-\frac{e \phi}{T}+\ldots\right\}=-\frac{e^{2} n_{0}}{T} \phi \\
\Rightarrow \nabla^{2} \phi=\frac{e^{2} n_{0}}{\varepsilon_{0} T} \phi
\end{gathered}
$$

Note 1: $\left(\sqrt{\frac{e^{2} n_{0}}{\varepsilon_{0} T}}\right)^{-1}$ has dimensions of a length. Define $\lambda_{D}=\sqrt{\frac{\varepsilon_{0} T}{e^{2} n_{0}}}$ "Debye length".
Note 2 : Spherical coordinates, only r dependence (problem is spherically symmetric).

$$
\nabla^{2} \equiv \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)
$$

Substitute

$$
U(r)=\phi(r) r
$$

Calculation

$$
\begin{aligned}
\frac{\partial \phi}{\partial r} & =\frac{\partial}{\partial r}\left(\frac{1}{r} U(r)\right)=-\frac{1}{r^{2}} U(r)+\frac{1}{r} \frac{\partial U}{\partial r} \\
\nabla^{2} \phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left\{r^{2}\left[-\frac{1}{r^{2}} U+\frac{1}{r} \frac{\partial U}{\partial r}\right]\right\} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left\{-U+r \frac{\partial U}{\partial r}\right\}=\frac{1}{r^{2}}\left\{-\frac{\partial U}{\partial r}+\frac{\partial U}{\partial r}+r \frac{\partial^{2} U}{\partial r^{2}}\right\} \\
& =\frac{1}{r} \frac{\partial^{2} U}{\partial r^{2}}=\frac{U}{r} \frac{1}{\lambda_{D}^{2}} \Rightarrow \frac{1}{k} \frac{\partial^{2} U}{\partial r^{2}}=\frac{U}{k} \frac{1}{\lambda_{D}^{2}}
\end{aligned}
$$

Solution :

$$
\begin{aligned}
U(r) & =A e^{-r / \lambda_{D}}+B e^{r / \lambda_{D}} \\
\text { or } \phi(r) & =A \frac{e^{-r / \lambda_{D}}}{r}+B \frac{e^{r / \lambda_{D}}}{r}
\end{aligned}
$$

Boundary conditions :

$$
\begin{cases}\phi(r) \stackrel{r \rightarrow \infty}{\rightarrow} 0 & \Rightarrow B=0 \\ \underbrace{\phi(r) \stackrel{r \rightarrow 0}{\sim} \frac{e}{4 \pi \varepsilon_{0} r}}_{\text {single particle potential }} & \Rightarrow A=\frac{e}{4 \pi \varepsilon_{0}}\end{cases}
$$

$$
\Rightarrow \phi(r)=\frac{e}{4 \pi \varepsilon_{0}} \frac{1}{r} \cdot e^{-r / \lambda_{D}}
$$

$\left[e^{-r / \lambda_{D}}\right.$: term due to plasma collective interactions]

Fig. 7: $\phi(r)$
with

$$
\begin{aligned}
& \lambda_{D}=\sqrt{\frac{\varepsilon_{0} T}{e^{2} n}} \leftarrow \text { thermal motion makes shielding difficult } \\
& \leftarrow \text { space charge helps shielding }
\end{aligned}
$$

Density :

$$
n_{e}(r) \cong n_{0}\left(1+\frac{e \phi}{T}\right)=n_{0}\{1+\underbrace{\frac{e^{2}}{4 \pi \varepsilon_{0} T} \frac{1}{r} e^{-r / \lambda_{D}}}_{>0 \text { as expected }}\}
$$

there are slightly more electrons around \oplus, but this extra electron density goes to 0 as $r \rightarrow \infty$, with λ_{D} as exponential decay length
Note : in order for this effect to happen, i.e. for the plasma to exhibit collective effects, we must have:

- enough particles within the sphere with radius equal to λ_{D} : $N_{D}=\frac{4}{3} \pi \lambda_{D}^{3} n_{0} \gg 1$
- plasma size $>\lambda_{D}$

1.3.2 Dynamical effect - Plasma Oscillations

By combining characteristic $\left.\begin{array}{l}\nearrow \\ \text { velocity } \\ \searrow \\ \text { length } \\ \left(\lambda_{d}\right)\end{array}\right)$, we can find a characteristic time (or frequency) for the plasma response to local violation of quasi-neutrality :

$$
\omega_{p} \sim \frac{1}{\tau} \sim \frac{v}{\lambda_{D}}=\sqrt{\frac{e^{2} n_{e}}{\epsilon_{0} m_{e}}}
$$

Numerically :

$$
f_{p}=\frac{\omega_{p}}{2 \pi} \simeq 9000 \sqrt{n\left[\mathrm{~cm}^{-3}\right]} \mathrm{Hz}
$$

Obs. : To propagate a wave in a simple plasma (no B-field) one should have $\omega>\omega_{p}$.

2 General problem of plasma description

Fig. 8: "Typical self-consistent loop which appears in plasma physics."

How to combine the three steps ? We need a model to describe the plasma.

Three models :

1. Single particle (eq. of motion) $\left\{\begin{array}{l}\text { orbits } \\ \text { magnetic confinement }\end{array}\right.$
2. Kinetic Boltzmann (Vlasov) $\left\{\begin{array}{l}\text { transport } \\ \text { wave-particle interactions }\end{array}\right.$
3. Fluid (eq. motion, continuity, eq. of state) $\left\{\begin{array}{l}\text { macro-stability (equilibrium) } \\ \text { waves }\end{array}\right.$

Today we discuss the single-particle model, in particular step A of Fig.8, i.e. how \mathbf{E}, \mathbf{B} affect particle motion.

Eq. of motion (non relativistic) :

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})+\mathbf{F}_{\mathrm{ext}} \Longrightarrow\left\{\begin{array} { l }
{ \mathbf { x } (t) } \\
{ \mathbf { v } (t) }
\end{array} \quad \text { for given } \left\{\begin{array}{l}
\mathbf{E}(\mathbf{x}, t) \\
\mathbf{B}(\mathbf{x}, t)
\end{array}\right.\right.
$$

Different important cases:

1. $\mathbf{B}=\mathbf{B}_{0} ; \mathbf{E}=0 \quad$ Larmor motion (diamagnetism)
2. $\mathbf{B}=\mathbf{B}_{0} ; \mathbf{E}=\mathbf{E}_{0} \quad$ " $\mathbf{E} \times \mathbf{B}$ drift"
3. $\mathbf{B}=\mathbf{B}(\mathbf{x}) ; \mathbf{E}=0 \quad$ " ∇B " and curvature drift with $\nabla B \perp \mathbf{B}$ (variation across \mathbf{B})
4. $\mathbf{B}=\mathbf{B}(\mathbf{x}) ; \mathbf{E}=0$
with $\nabla B \| \mathbf{B}$ (variation along $\mathbf{B}) \rightarrow$ magnetic mirror

Naturally, there exist other, more complicated situations, but the main aspects are captured in the four simple cases illustrated here.

$2.1 B_{0}$ uniform, no E

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=q \mathbf{v} \times \mathbf{B}_{0}
$$

Conventional case; we won't repeat the equations.

\mathbf{B}_{0}

Fig. 9: Circular motion

$$
\frac{m v_{\perp}^{2}}{\rho_{L}}=m \rho_{L} \Omega^{2}=|q| v_{\perp} B_{0} \rightarrow\left\{\begin{array}{l}
\rho_{L}=\frac{v_{\perp}}{\Omega} \\
\Omega=\frac{|q| B_{0}}{m}
\end{array} \text { (from laws of circular motion, } v_{\perp}=p \Omega\right. \text {) }
$$

Numerical values:

$$
f=\frac{\Omega}{2 \pi}=\left\{\begin{array}{lll}
\text { el. } & 28 \times B[\mathrm{~T}][\mathrm{GHz}] & \text { ex: ITER } f_{e} \sim 170 \mathrm{GHz} \\
\text { ions } & 15.2 \frac{\mathrm{z}}{\mathrm{~A}} \times B[\mathrm{~T}][\mathrm{MHz}] & \text { ex: ITER } f_{i} \sim 50 \mathrm{MHz}
\end{array}\right.
$$

$\rho_{L}=\frac{v_{\perp}}{\Omega}=\left\{\begin{array}{lll}\text { el. } & 10^{-4} \frac{\sqrt{T_{e}[\mathrm{keV}]}}{B_{0}[\mathrm{~T}]}[\mathrm{m}] & \left(\mathrm{ex}: 10 \mathrm{keV}, \mathrm{B}=3 \mathrm{~T} \rightarrow \rho_{L_{e}} \simeq 0.1 \mathrm{~mm}\right) \\ \text { ions } & 5 \cdot 10^{-3} \frac{\sqrt{T_{e}[\mathrm{keV}]}}{B_{0}[\mathrm{~T}]} \sqrt{\frac{m_{i}}{m_{\rho}}}[\mathrm{m}] & \left(\mathrm{ex}: 10 \mathrm{keV}, \mathrm{B}=3 \mathrm{~T}, \mathrm{H} \text {-ions } \rightarrow \rho_{L_{i}} \simeq 7 \mathrm{~mm}\right)\end{array}\right.$

Obs. 1 : from our "design of reactor" study we know that $B \sim 5 \mathrm{~T}$, plasma radius $\gg 7 \mathrm{~mm}$ so we are ok.

Obs. 2 :

- Energy is conserved (force is \perp to \mathbf{v} : no work!) NB: we neglect losses by radiation
- Parallel and perpendicular motions are decoupled

Obs. 3 : sign of gyro-motion gives reduction of \mathbf{B}_{0} : diagmagnetism [remember : this is why $\beta=\frac{n T}{B^{2} / 2 \mu_{0}}<1$]

$2.2 \mathrm{~B}_{0}$ and E_{0} uniform

$\|$ motion : $m \frac{\mathrm{~d} v_{\|}}{\mathrm{d} t}=q E_{\|} \quad\left\{\begin{array}{l}v_{\|}(t)=v_{\| 0}+\frac{q}{m} E_{0} t \quad \text { (nothing special) } \\ z(t)=z_{0}+v_{\| 0} t+\frac{1}{2} \frac{q}{m} E_{0} t^{2}\end{array}\right.$
\perp motion : sketch for $\mathbf{E}_{0} \perp \mathbf{B}_{0}$:

Fig. 10: Motion of the ions

And the same holds for electrons
\Rightarrow Drifts to the left for both species.

How to calculate this steady-state drift ?
Def : $\mathbf{v}_{L}=$ solution of case $\mathbf{B}=\mathbf{B}_{0} ; \mathbf{E}=0$ (Larmor motion)

Fig. 11: Motion of the electrons

We look for \mathbf{v}_{d}, such that $\mathbf{E}_{0}+\mathbf{v}_{d} \times \mathbf{B}_{0}=0$; in fact $\mathbf{v}_{L}+\mathbf{v}_{d}$ is the solution ($\mathbf{v}_{d}=$ constant).
$m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=q\left(\mathbf{E}_{0}+\mathbf{v} \times \mathbf{B}_{0}\right) ;$ but $\mathbf{v}_{L}: m \frac{\mathrm{~d} \mathbf{v}_{L}}{\mathrm{~d} t}=q \mathbf{v}_{L} \times \mathbf{B}_{0}$
$m \frac{\mathrm{~d} \mathbf{v}_{L}}{\mathrm{~d} t}+m \frac{\mathrm{~d} \mathbf{v}_{d}}{\mathrm{~d} t}=q \mathbf{E}_{0}+q \mathbf{v}_{L} \times \mathbf{B}_{0}+q \mathbf{v}_{d} \times \mathbf{B}_{0}$

So, we need to solve ${ }^{1} \mathbf{E}_{0}+\mathbf{v}_{d} \times \mathbf{B}_{0}=0 \quad\left(\times \mathbf{B}_{0}\right)$

$$
\mathbf{E}_{0} \times \mathbf{B}_{0}+\left(\mathbf{v}_{d} \times \mathbf{B}_{0}\right) \times \mathbf{B}_{0}=0 \quad \Rightarrow \quad \mathbf{E}_{0} \times \mathbf{B}_{0}+\underbrace{\left(\mathbf{v}_{d} \cdot \mathbf{B}_{0}\right) \mathbf{B}_{0}}_{\| \text {to } B_{0}}-\mathbf{v}_{d} B_{0}^{2}=0
$$

\perp motion (the one we are interested in) :

$$
\mathbf{E}_{0} \times \mathbf{B}_{0}=\mathbf{v}_{d_{\perp}} B_{0}^{2} \Rightarrow \mathbf{v}_{d_{\perp}}=\mathbf{v}_{E \times B}=\frac{\mathbf{E}_{0} \times \mathbf{B}_{0}}{B_{0}^{2}}
$$

\rightarrow "E cross B drift" (of "guiding center") as expected from sketch.
Obs. :

- \mathbf{v}_{d} is independent of charge, m, v.
- same for ions, electrons \rightarrow no current, no charge separation

Generalisation of $\mathbf{v}_{E \times B}$
Instead of $q \mathbf{E}_{0}$, we can put any force $\mathbf{F}_{\text {ext }}=q \mathbf{E}_{0}$, or $\mathbf{E}_{0}=\frac{\mathrm{F}_{\text {ext }}}{q}$

$$
\begin{equation*}
\Rightarrow \mathbf{v}_{F}=\frac{\mathbf{F}_{\mathrm{ext}} / q \times \mathbf{B}_{0}}{B_{0}^{2}} \quad \text { ex : gravity : } \mathbf{v}_{g}=\frac{m \mathbf{g}_{\mathrm{ext}} / q \times \mathbf{B}_{0}}{B_{0}^{2}} \tag{2.1}
\end{equation*}
$$

Obs. : if $\mathbf{F}_{\text {ext }}$ does not contain the charge, then drift does depend on charge $(\rightarrow$ charge separation)

[^0]
2.3 $\mathbf{B}(\mathbf{x})$ and $\mathbf{E}=0$, with $\nabla B \perp \mathbf{B}$ (variation across \mathbf{B})

Two possibilities:
(3a) $|\mathbf{B}|$ changes, but not the direction
(3b) only the direction of \mathbf{B} changes $(\mathbf{B} /|\mathbf{B}|$ changes along $\mathbf{B})$
(3a)

Fig. 12: $|\mathbf{B}|$ increases with y (vertically)

Calculation is complicated, but if the variations are not too fast (in space and in time), we can always decompose the motion into $\left\{\begin{array}{l}\text { Larmor motion } \\ \text { drift of guiding center }\end{array}\right.$

Conditions:

$$
\begin{aligned}
L_{\perp} & =\left|\frac{B}{\nabla_{\perp} B}\right| \gg \rho_{L} \quad \text { variation occurs over distances larger than } \rho_{L} \\
L_{\|} & =\left|\frac{B}{\nabla_{\|} B}\right| \gg v_{\|} \underbrace{\frac{2 \pi}{\Omega}} \\
& \text { space covered in one Larmor orbit }
\end{aligned}
$$

time $\quad\left|\frac{1}{B} \frac{\partial B}{\partial t}\right| \ll \Omega$

Sketch :

Fig. 13: Motion of ions (upper) and electrons (lower).

Precise calculation gives in fact

$$
\mathbf{v}_{d}=\frac{1}{2 q} m \mathbf{v}_{\perp}^{2} \frac{\mathbf{B} \times \nabla B}{B^{3}}=\mathbf{v}_{\nabla B} \quad \text { "grad B drift" }
$$

Obs. : $\mathbf{v}_{\nabla B}$ depends on q

$$
\Rightarrow \text { current }
$$

\Rightarrow charge separation
(3b) Variation in direction of \mathbf{B}

Fig. 14: Sketch

Guiding center feels centrifugal force :

$$
\mathbf{F}_{\mathrm{gc}}=m \frac{v_{\|}^{2}}{R_{c}} \frac{\mathbf{R}_{c}}{R_{c}} \equiv \mathbf{F}_{\mathrm{ext}}
$$

\Rightarrow we know $\mathbf{v}_{d}=\frac{1}{q} \frac{\mathbf{F}_{\text {ext }} \times \mathbf{B}}{B^{2}}$. So the "curvature drift" is

$$
\mathbf{v}_{\text {curv }}=\frac{1}{q B^{2}} m \frac{v_{\|}^{2}}{R_{c}} \frac{\mathbf{R}_{c}}{R_{c}} \times \mathbf{B}=\frac{1}{q} \frac{m v_{\|}^{2}}{R_{c}^{2}} \frac{\mathbf{R}_{c} \times \mathbf{B}}{B^{2}}
$$

Case of vacuum fields (how to confine a plasma ?)

- Combine $\mathbf{v}_{\nabla B}$ and $\mathbf{v}_{\text {curv }}$
- In vacuum (in cyl. coordinates) $|\mathbf{B}| \propto \frac{1}{R_{c}}$ so that

$$
\frac{\nabla B}{B}=-\frac{1}{R_{c}^{2}} \mathbf{R}_{c}
$$

Fig. 15: Confining a plasma

So

$$
\begin{aligned}
\mathbf{v}_{d}^{\text {total }}= & \frac{1}{2 q} m v_{\perp}^{2} \frac{\mathbf{B} \times \nabla B}{B^{3}}+\frac{1}{q} m v_{\|}^{2} \frac{\mathbf{R}_{c} \times \mathbf{B}}{B^{2} R_{c}^{2}} \\
= & \frac{1}{2 q} m v_{\perp}^{2} \frac{\mathbf{R}_{c} \times \mathbf{B}}{B^{2} R_{c}^{2}}+\frac{1}{q} m v_{\|}^{2} \frac{\mathbf{R}_{c} \times \mathbf{B}}{B^{2} R_{c}^{2}} \\
= & {\left[\frac{1}{2} m v_{\perp}^{2}+m v_{\|}^{2}\right] \frac{1}{q} \frac{\mathbf{R}_{c} \times \mathbf{B}}{B^{2} R_{c}^{2}} } \\
= & \text { if we average over distribution : } \\
& \left.<\frac{1}{2} m v_{\perp}^{2}\right\rangle=T \quad(2 \text { degrees of freedom }) \\
& \left.<\frac{1}{2} m v_{\|}^{2}\right\rangle=\frac{T}{2} \quad(1 \text { degree of freedom }) \\
& \Rightarrow\left\langle\mathbf{v}_{d}^{\text {total }}\right\rangle=\frac{2 T}{q} \frac{\mathbf{R}_{c} \times \mathbf{B}}{B^{2} R_{c}^{2}}
\end{aligned}
$$

Obs.

- $\mathbf{v}_{\text {curv }}$ and $\mathbf{v}_{\nabla B}$ add up (unfortunately !)
- dependence on $q \rightarrow$ charge separation
- Proportional to energy, no mass dependence

Magnitude :

$$
\left\lvert\,\left\langle\mathbf{v}_{d}^{\text {total }}>\right|=\frac{2 T}{|q|} \frac{1}{B R_{c}}=v \frac{\rho_{L}}{R_{c}}\right.
$$

Can we conclude anything about particle confinement?

Simplest idea : particles move freely along But not acroos : let's confine them in a toroidal system (no beginning, no end).

What happens ?
[This is done in exercices]

Fig. 16: $\mathbf{E} \times \mathbf{B}$ outwards \Rightarrow no confinement
We need a more complicated B-field structure to confine particles! (\rightarrow rotational transform, tokamak, ...)

2.4 $\mathbf{B}(\mathbf{x})$ and $\mathbf{E}=0$, with $\nabla B \| \mathbf{B}$ (variation of $|\mathbf{B}|$ along \mathbf{B})

$\nabla B \| \mathbf{B}$
$L_{\|}=\left|\frac{B}{\nabla_{\|} B}\right| \gg v_{\|} \underbrace{\frac{2 \pi}{\Omega}}_{\text {space covered in one Larmor orbit }} \quad$ (to have Larmor motion)
Cylindrical coordinates (r, θ, z) :

- $B_{\theta}=0 \rightarrow B_{z}=B_{z}(z)$
- but $B_{r} \neq 0$ (field lines are not exactly along z)

$$
\begin{array}{r}
\nabla \cdot \mathbf{B}=0 \quad \text { cyl. coord. } \frac{1}{\Rightarrow} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{\partial B_{z}}{\partial z}=0 \quad \rightarrow \frac{\partial}{\partial r}\left(r B_{r}\right)=-r \frac{\partial B_{z}}{\partial z} \\
r B_{r}=-\int_{0}^{r} d r^{\prime}\left(r^{\prime} \frac{\partial B_{z}}{\partial z}\right) \stackrel{\text { small distances }}{\simeq}\left(-\left.\frac{\partial B_{z}}{\partial z}\right|_{r=0}\right) \frac{r^{2}}{2} \Rightarrow B_{r} \simeq-\left.\frac{r}{2} \frac{\partial B_{z}}{\partial z}\right|_{r=0}
\end{array}
$$

Obs. : $|B|=|B(r, z)| \quad \rightarrow \quad \mathbf{B} \times \nabla B$ drift is azimuthal (not important).

We are interested in parallel motion.
Consider a particle whose guiding center lies on $z=0$ axis : $r \sim \rho_{L}$

$$
B_{r} \simeq-\frac{\rho_{L}}{2} \frac{\partial B_{z}}{\partial z}\left\{\text { "little" } B_{r} \text { produced by the fact that } B \text { varies with } z\right\}
$$

Fig. 17: Description with cylindrical coordinates
which parallel force does this produce ?
Parallel force (with $B_{\theta}=0$ and $v_{\theta}=\mp v_{\perp}=-\frac{|q|}{q} v_{\perp}$):

$$
\begin{aligned}
q(\mathbf{v} \times \mathbf{B})_{z} & =q\left(v_{r} B_{\theta}-v_{\theta} B_{r}\right)=-q\left(\mp v_{\perp}\right) B_{r}=+q \frac{|q|}{q} v_{\perp} B_{r} \\
& =|q| v_{\perp} B_{r} \simeq|q| v_{\perp}\left(-\frac{\rho_{L}}{2} \frac{\partial B_{z}}{\partial z}\right)=-|q| v_{\perp} \underbrace{\frac{v_{\perp} m}{|q| B}}_{\rho_{L}} \frac{1}{2} \frac{\partial B_{z}}{\partial z} \\
& =-\underbrace{\frac{1}{2} \frac{v_{\perp}^{2} m}{B} \frac{\partial B_{z}}{\partial z}=-\mu \frac{\partial B_{z}}{\partial z}}_{\mu \text { "magnetic moment" (corresponds to current×area) }}
\end{aligned}
$$

So, both electrons and ions feel a force that tries to prevent them from moving towards increasing field.

Eq. of motion (|| to B) :

$$
m \frac{\mathrm{~d} v_{\|}}{\mathrm{d} t}=-\mu \nabla_{\|} B
$$

This is a very useful form, as, in the conditions of interest here, μ is conserved ["adiabatic invariant", i.e. constant if the changes in the system are slow (in time and space)].
μ is constant along particle motion : as $\mu=\frac{1 / 2 m v_{\perp}^{2}}{B}$, if B increases, v_{\perp} must increase.
But total kinetic energy is constant, therefore $v_{\perp}^{2}+v_{\|}^{2}=$ const \Rightarrow if v_{\perp} increases, $v_{\|}$ must decrease.

Magnetic mirror

$$
\frac{m v_{\|}^{2}}{2}=\text { Energy }-\mu B
$$

If \mathbf{B} is large enough in the throat, $v_{\|} \rightarrow 0$ and can change sign [both for ions and electrons] \Rightarrow particles are "reflected"

Obs. 1 : This is how particles are confined in Van-Allen belts in Earth dipole field.

Fig. 18: Magnetic mirror

Fig. 19: Earth dipole field
[ions from thermonuclear explosions stay confined for many years !]
Obs. 2: Magnetic mirrors were the first confinement schemes to be tested for fusion. But they have a problem : not all particles are confined ! E.g. : if $v_{\perp}=0 \rightarrow \mu=0 \rightarrow F_{\|}=0$. One needs a large enough ratio $v_{\perp} / v_{\|}$.
In the exercice today you'll evaluate this limit ("loss cone").

[^0]: ${ }^{1}(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{c} \times \mathbf{b}) \times \mathbf{a}=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

