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Plasma state and collective effects

• Definition of plasma

• Plasma production by ionisation

• Collective effects: Debye screening and the plasma frequency

• Models for a general description of plasmas

Single particle motion

Motion of charged particles in electric and magnetic fields

• B0, E = 0 (Larmor motion, diamagnetism)

• B0, E0 (E × B drift)

• B(x), variation across B, E = 0 (grad B and curvature drifts)

• B(x), variation along B, E = 0 (mirror effect)

Suggested additional reading

A.Fasoli, Plasma Physics II Lecture Notes, Chapters 1 and 2, and
Appendix A (https://crppwww.epfl.ch/physplas2/repository/2011/Fasoli_PlasmasII.pdf)

J.Freidberg’s book, Chapter 8 (8.1-8.7 and 8.9-8.10)
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1 The plasma state

What is a plasma ? “An ionised gas, quasi-neutral, exhibiting collective effects”

1.1 “Ionised”

Result of the process of ionisation. In most cases of interest for us, for fusion, impact
ionisation is the dominant process :

Fig. 1: Ionisation process Fig. 2: Ionisation cross section

For a plasma to be in equilibrium, there has to be the same number of ionisations and re-
combination events.

Recombination : in our plasmas it’ll be dominated by “radiative” recombination

Fig. 3: Recombination process Fig. 4: Recombination cross section

The equilibrium is given by

ne < σrecve >= nn < σionve > <>= average over distribution function

↑ ↑
’targets’ are not the same for the two processes !
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A very simple equilibrium is that of the solar corona (between impact ionisation and radiative
recombination), for a global thermodynamical equilibrium → Saha equation

ne
nn
≈ 3 · 1027

T 3/2 [eV]
ni [m−3]

exp{−
Ei
T
}

Te = Ti = Tn = T

Ei = ionisation energy

and defining α = ne
ne+nn

the relative degree of ionisation :

α =
1

1 + ni e
Ei /T

3·1027 T 3/2
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PLASMA  STATE 

Fig. 5: α against temperature

Sharp transition from exponential → “phase transition” → plasma ≡ 4th state of matter

Various plasmas

Ex. 1 : Air (∼ N2, Ei = 14.5 eV), T ∼ 1/40 eV, nn ≈ 1025 m−3, nenn ∼ α ∼ 10
−120 ∼ 0 !

Ex. 2 : Solar corona T ∼ 500 eV, ne ∼ 1013 m−3 ⇒ α ∼ 1

1.2 “Globally neutral” (‘quasi-neutrality’)

ne ≈ ni at least on average (both spatially and temporally). In the exercise you have demon-
strated ‘quantitatively’ how difficult it is to violate quasi-neutrality.

Naturally, if we look at a microscopic level, this neutrality will be violated, for e.g., if we
approach an individual ion. So, the question is, how close should we be to the single charge
to feel its field ?

This question leads us to the 3rd aspect of the definition of a plasma : collective effects.
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1.3 “Collective effects”

1.3.1 Static : charge (or potential) screening

Fig. 6: An extra ion is inserted

Insert an extra positive charge (fig. 6) :

• potential around it ?

• density of electrons around it ?

• up to which distance perturbation will be felt ?

Solution in simple situation :

• Ti = 0 (ions don’t move); ni = n0, and ne = n0 for r →∞

• Electrons are distributed according to Maxwell-Boltzmann : ne = n0 exp{− energy
T } =

n0 exp{ eφ(r)T }

• Perturbation is small [quasi-neutrality !] : eφT ≪ 1

• singly ionised ions (qi = +e)

∇ · E =
ρ

ε0
⇒ ∇2φ = −

ρ

ε0

but

ρ = e(ni − ne) = en0{1− eeφ/T } ≈ en0{1− 1−
eφ

T
+ . . .} = −

e2n0
T
φ

⇒ ∇2φ =
e2n0
ε0T

φ

Note 1 :
(√

e2n0
ε0T

)−1
has dimensions of a length. Define λD =

√
ε0T
e2n0

“Debye length”.

Note 2 : Spherical coordinates, only r dependence (problem is spherically symmetric).

∇2 ≡
1

r2
∂

∂r

(
r2
∂

∂r

)

Substitute
U(r) = φ(r)r
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Calculation

∂φ

∂r
=

∂

∂r

(
1

r
U(r)

)
= −

1

r2
U(r) +

1

r

∂U

∂r

∇2φ =
1

r2
∂

∂r

{
r2

[
−
1

r2
U +

1

r

∂U

∂r

]}
=
1

r2
∂

∂r

{
−U + r

∂U

∂r

}
=
1

r2

{
−
∂U

∂r
+
∂U

∂r
+ r
∂2U

∂r2

}

=
1

r

∂2U

∂r2
=
U

r

1

λ2D
⇒
1

Ar

∂2U

∂r2
=
U

Ar

1

λ2D

Solution :

U(r) = Ae−r/λD + Ber/λD

or φ(r) = A
e−r/λD

r
+ B
er/λD

r

Boundary conditions : 
φ(r)

r→∞→ 0 ⇒ B = 0

φ(r)
r→0∼

e

4πε0r︸ ︷︷ ︸
single particle potential

⇒ A = e
4πε0

⇒ φ(r) =
e

4πε0

1

r
· e−r/λD

[e−r/λD : term due to plasma collec-
tive interactions]

Fig. 7: φ(r)

with

λD =

√
ε0T

e2n

← thermal motion makes shielding difficult
← space charge helps shielding

Density :

ne(r) ∼= n0(1 +
eφ

T
) = n0

1 +
e2

4πε0T

1

r
e−r/λD︸ ︷︷ ︸

>0 as expected


there are slightly more electrons around ⊕, but this extra electron density goes to 0 as
r →∞, with λD as exponential decay length

Note : in order for this effect to happen, i.e. for the plasma to exhibit collective effects, we
must have:
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• enough particles within the sphere with radius equal to λD : ND = 4
3πλ

3
Dn0 ≫ 1

• plasma size > λD

1.3.2 Dynamical effect - Plasma Oscillations

By combining characteristic
↗ velocity (v =

√
Te/me)

↘ length (λd)
, we can find a characteristic

time (or frequency) for the plasma response to local violation of quasi-neutrality :

ωp ∼
1

τ
∼
v

λD
=

√
e2ne
ϵ0me

Numerically :
fp =

ωp
2π
≃ 9000

√
n [cm−3] Hz

Obs. : To propagate a wave in a simple plasma (no B-field) one should have ω > ωp.

2 General problem of plasma description

Fig. 8: “Typical self-consistent loop which appears in plasma physics.”

How to combine the three steps ? We need a model to describe the plasma.

Three models :

1. Single particle (eq. of motion)
{

orbits
magnetic confinement

2. Kinetic Boltzmann (Vlasov)
{

transport
wave-particle interactions

3. Fluid (eq. motion, continuity, eq. of state)
{

macro-stability (equilibrium)
waves



2.1 B0 uniform, no E 7

Today we discuss the single-particle model, in particular step A of Fig.8, i.e. how E,B affect
particle motion.

Eq. of motion (non relativistic) :

m
dv
dt
= q(E+ v × B) + Fext =⇒

{
x(t)

v(t)
for given

{
E(x, t)

B(x, t)

Different important cases:

1. B = B0 ; E = 0 Larmor motion (diamagnetism)

2. B = B0 ; E = E0 “E× B drift”

3. B = B(x) ; E = 0 “∇B” and curvature drift
with ∇B ⊥ B (variation across B)

4. B = B(x) ; E = 0
with ∇B ∥ B (variation along B) → magnetic mirror

Naturally, there exist other, more complicated situations, but the main aspects are captured
in the four simple cases illustrated here.

2.1 B0 uniform, no E

m
dv
dt
= qv × B0

Conventional case; we won’t repeat the equations.

Fig. 9: Circular motion

mv2⊥
ρL
= mρLΩ

2 = |q| v⊥B0 →


ρL =

v⊥
Ω

Ω =
|q|B0
m

(from laws of circular motion, v⊥ = ρΩ)

Numerical values :

f =
Ω

2π
=

{
el. 28× B[T] [GHz] ex : ITER fe ∼ 170 GHz
ions 15.2Z

A × B[T] [MHz] ex : ITER fi ∼ 50 MHz
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ρL =
v⊥
Ω
=


el. 10−4

√
Te [keV]
B0 [T] [m] (ex : 10 keV, B=3T→ ρLe ≃ 0.1mm)

ions 5 · 10−3
√
Te [keV]
B0 [T]

√
mi
mp

[m] (ex : 10 keV, B=3T, H-ions→ ρLi ≃ 7mm)

Obs. 1 : from our “design of reactor” study we know that B ∼ 5T, plasma radius >> 7mm
so we are ok.

Obs. 2 :

• Energy is conserved (force is ⊥ to v : no work !) NB : we neglect losses by radiation

• Parallel and perpendicular motions are decoupled

Obs. 3 : sign of gyro-motion gives reduction of B0 : diagmagnetism [remember : this is
why β = nT

B2/2µ0
< 1]

2.2 B0 and E0 uniform

∥ motion : m
dv∥
dt = qE∥

{
v∥(t) = v∥0 +

q
mE0t (nothing special)

z(t) = z0 + v∥0t +
1
2
q
mE0t

2

⊥ motion : sketch for E0 ⊥ B0 :

:

Fig. 10: Motion of the ions

And the same holds for electrons

⇒ Drifts to the left for both species.

How to calculate this steady-state drift ?

Def : vL = solution of case B = B0 ; E = 0 (Larmor motion)
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Fig. 11: Motion of the electrons

We look for vd , such that E0+vd ×B0 = 0 ; in fact vL+vd is the solution (vd = constant).

m
dv
dt
= q(E0 + v × B0); but vL : m

dvL
dt
= qvL × B0

m
dvL
dt
+m

dvd
dt
= qE0 + qvL × B0 + qvd × B0

So, we need to solve1 E0 + vd × B0 = 0 (×B0)

E0 × B0 + (vd × B0)× B0 = 0 ⇒ E0 × B0 + (vd · B0)B0︸ ︷︷ ︸
∥ to B0

−vdB20 = 0

⊥ motion (the one we are interested in) :

E0 × B0 = vd⊥B
2
0 ⇒ vd⊥ = vE×B =

E0 × B0
B20

→ “E cross B drift” (of “guiding center”) as expected from sketch.

Obs. :

• vd is independent of charge, m, v .

• same for ions, electrons → no current, no charge separation

Generalisation of vE×B

Instead of qE0, we can put any force Fext = qE0, or E0 = Fext
q

⇒ vF =
Fext/q × B0
B20

ex : gravity : vg =
mgext/q × B0

B20
(2.1)

Obs. : if Fext does not contain the charge, then drift does depend on charge (→ charge
separation)

1 (a× b)× c = (c× b)× a = (a · c)b− (a · b)c
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2.3 B(x) and E = 0, with ∇B ⊥ B (variation across B)

Two possibilities :

(3a) |B| changes, but not the direction

(3b) only the direction of B changes (B/|B| changes along B)

(3a)

Fig. 12: |B| increases with y (vertically)

Calculation is complicated, but if the variations are not too fast (in space and in time), we

can always decompose the motion into
{

Larmor motion
drift of guiding center

Conditions :

L⊥ =

∣∣∣∣ B∇⊥B
∣∣∣∣≫ ρL variation occurs over distances larger than ρL

L∥ =

∣∣∣∣ B∇∥B
∣∣∣∣≫ v∥ 2πΩ︸︷︷︸

space covered in one Larmor orbit

time
∣∣∣∣ 1B ∂B∂t

∣∣∣∣≪ Ω
Sketch :
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Fig. 13: Motion of ions (upper) and electrons (lower).

Drift should be to the{
left for ions
right for electrons

v ∼ qB×∇B

Precise calculation gives in fact

vd =
1

2q
mv2⊥

B×∇B
B3

= v∇B “grad B drift”

Obs. : v∇B depends on q

⇒ current

⇒ charge separation

(3b) Variation in direction of B

Fig. 14: Sketch

Guiding center feels centrifugal force :

Fgc = m
v2∥
Rc

Rc
Rc
≡ Fext
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⇒ we know vd =
1

q

Fext × B
B2

. So the “curvature drift” is

vcurv =
1

q B2
m
v2∥
Rc

Rc
Rc
× B =

1

q

mv2∥
R2c

Rc × B
B2

Case of vacuum fields (how to confine a plasma ?)

• Combine v∇B and vcurv

• In vacuum (in cyl. coordinates) |B| ∝
1

Rc
so that

∇B
B
= −

1

R2c
Rc

Fig. 15: Confining a plasma

So

vtotal
d =

1

2q
mv2⊥

B×∇B
B3

+
1

q
mv2∥

Rc × B
B2R2c

=
1

2q
mv2⊥

Rc × B
B2R2c

+
1

q
mv2∥

Rc × B
B2R2c

=

[
1

2
mv2⊥ +mv

2
∥

]
1

q

Rc × B
B2R2c

= if we average over distribution :

<
1

2
mv2⊥ >= T (2 degrees of freedom)

<
1

2
mv2∥ >=

T

2
(1 degree of freedom)

⇒ < vtotal
d >=

2T

q

Rc × B
B2R2c

Obs. :

• vcurv and v∇B add up (unfortunately !)

• dependence on q → charge separation

• Proportional to energy, no mass dependence

Magnitude : ∣∣< vtotal
d >

∣∣ = 2T|q| 1BRc = v ρLRc
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Can we conclude anything about particle confinement ?

Simplest idea : particles move freely along B but not acroos : let’s confine them in a toroidal
system (no beginning, no end).

What happens ?
[This is done in exercices]

Fig. 16: E× B outwards ⇒ no confinement

We need a more complicated B-field structure to confine particles ! (→ rotational transform,
tokamak, . . . )

2.4 B(x) and E = 0, with ∇B ∥ B (variation of |B| along B)

∇B ∥ B

L∥ =
∣∣∣ B∇∥B ∣∣∣ ≫ v∥

2π

Ω︸︷︷︸ (to have Larmor motion)

space covered in one Larmor orbit

Cylindrical coordinates (r, θ, z) :

• Bθ = 0→ Bz = Bz(z)

• but Br ̸= 0 (field lines are not exactly along z)

∇ · B = 0 cyl. coord.⇒
1

r

∂

∂r
(rBr ) +

∂Bz
∂z
= 0 →

∂

∂r
(rBr ) = −r

∂Bz
∂z

rBr = −
∫ r
0

dr ′
(
r ′
∂Bz
∂z

)
small distances≃

(
−
∂Bz
∂z

∣∣∣∣
r=0

)
r2

2
⇒ Br ≃ −

r

2

∂Bz
∂z

∣∣∣∣
r=0

Obs. : |B| = |B(r, z)| → B×∇B drift is azimuthal (not important).

We are interested in parallel motion.

Consider a particle whose guiding center lies on z = 0 axis : r ∼ ρL

Br ≃ −
ρL
2

∂Bz
∂z

{“little” Br produced by the fact that B varies with z}
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Fig. 17: Description with cylindrical coordinates

which parallel force does this produce ?

Parallel force (with Bθ = 0 and vθ = ∓v⊥ = − |q|q v⊥):

q(v × B)z = q(vrBθ − vθBr ) = −q(∓v⊥)Br = +q
|q|
q
v⊥Br

= |q| v⊥Br ≃ |q| v⊥
(
−
ρL
2

∂Bz
∂z

)
= − |q| v⊥

v⊥m

|q|B︸︷︷︸
ρL

1

2

∂Bz
∂z

= −
1

2

v2⊥m

B︸ ︷︷ ︸ ∂Bz∂z = −µ ∂Bz∂z
µ “magnetic moment” (corresponds to current×area)

So, both electrons and ions feel a force that tries to prevent them from moving towards
increasing field.

Eq. of motion (∥ to B) :

m
dv∥
dt
= −µ∇∥B

This is a very useful form, as, in the conditions of interest here, µ is conserved [“adiabatic
invariant”, i.e. constant if the changes in the system are slow (in time and space)].

µ is constant along particle motion : as µ = 1/2mv2⊥
B , if B increases, v⊥ must increase.

But total kinetic energy is constant, therefore v2⊥ + v
2
∥ = const ⇒ if v⊥ increases, v∥

must decrease.

Magnetic mirror

mv2∥
2
= Energy− µB

If B is large enough in the throat, v∥ → 0 and can change sign [both for ions and electrons]
⇒ particles are “reflected”

Obs. 1 : This is how particles are confined in Van-Allen belts in Earth dipole field.
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Fig. 18: Magnetic mirror

Fig. 19: Earth dipole field

[ions from thermonuclear explosions stay confined for many years !]

Obs. 2 : Magnetic mirrors were the first confinement schemes to be tested for fusion. But
they have a problem : not all particles are confined ! E.g. : if v⊥ = 0→ µ = 0→ F∥ = 0.
One needs a large enough ratio v⊥/v∥.

In the exercice today you’ll evaluate this limit (“loss cone”).


