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Solutions to Problem Set 2

Exercise 1 - Perfect Plasma Power Reactor

a) We must try to minimize the quantity
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which is a function of R0 and a, under the constraints
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The second constraint can be written as
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Replacing in the equation for the first constraint gives:
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Now we use this result in the expression for F , to express the quantity to be minimized
as
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F is minimized for a → ∞ and correspondingly R0 → 0. This is limited by the
topological constraint a < R0 − b: the plasma minor radius cannot be larger than the
torus major radius minus the thickness of the blanket. So the minimum value of F is
reached for a = R0 − b. Replacing R0 = a + b in (4), we get a quadratic equation for
a :
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We are interested in the positive solution :

a =

−b+

√
b2 − 4

(
− 1

4π2ηt

PE

Lmax
W

∆Eα+0.3∆En

∆Efus+∆ELi

)
2

=
−1.5m +

√
(1.5m)2 + 1

π2 · 0.35
1 · 109W

4 · 106W/m2

(3.5+4.2)MeV
22.4MeV

2
= 1.85m.

1



The major radius is then
R0 = a+ b = 3.35m

and the corresponding value of F is

Fmin =
3 · 103 kg/m3

2 · 0.35
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)
≈ 1.56×103 kg/MW.

This makes the mass utilization factor be ≈ 1.56 times that of a fission reactor.

Exercise 2 - Plasma β limit and diamagnetism

a) The current per unit length generated by a single charged particle in its Larmor orbit

(often referred to as the Larmor “circuit”) is given by ij = −qj
Ωj

2π
, where Ωj is the

cyclotron frequency of the particle. This current produces a magnetic field according
to Ampère’s law, which in differential form is ∇ × B⃗ = µ0J⃗ , where J⃗ is the current
density.

Using this relationship, we can express the small change in the magnetic field δB as
δB = µ0δi, where δi is the change in current produced by the particles. Substituting

the expression for the current ij, we obtain δB = −µ0q2jB

2πmj
δn, where δn represents the

change in particle density.

This result shows that the induced magnetic field δB is negative, meaning it opposes
the original magnetic field B. This induced field has the same sign for both electrons
and ions, which implies that the motion of charged particles in a magnetic field tends
to create a magnetic field that counteracts and reduces the strength of the externally
applied magnetic field. This phenomenon is the basis of plasma diamagnetism.

b) At a given point in space, the number of particles that contribute to the reduction
of the B field is determined by the number of particles whose Larmor orbit passes
through that point. This contribution is proportional to the particle density n and
the surface area swept by each Larmor orbit, given by SL = πρ2L ∼ v2⊥. Since v2⊥ is
proportional to the plasma’s thermal kinetic energy, and thus to the temperature T ,
the overall effect on the magnetic field is proportional to both n and T . Therefore,
the induced diamagnetic field is proportional to the plasma pressure, leading to the
relationship δB ∼ nT .

Here we have assumed that v⊥ is equal for all particles at all points in space. In reality
we would have to integrate over the distribution function f(x, v) describing the dis-
tribution of velocity over the particle population: δB(x) = −µ0

B
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c) At some point, the diamagnetism will reduce the magnetic field to such an extent that
the Larmor radius becomes larger than the machine size and the particles are no longer
confined.
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Exercise 3 - Violating quasi-neutrality

In the definition of a plasma, it is stated that, although it is an ionized gas made of
separate positive and negative charges, it is globally neutral.

However, if this balance is disturbed, even slightly, significant forces can arise within the
plasma. In this exercise, we will explore the consequences of a small violation of quasi-
neutrality, where the density of positive charges slightly exceeds that of negative charges.
Such a scenario can provide insights into the forces that work to restore equilibrium in a
plasma.

a) We first set up our simple 1D model of a plasma by considering a plasma located
between x = −d/2 and x = d/2, where d = 1m. It is assumed homogeneous and
infinite in all other directions (y and z), which simplifies our calculations by focusing
on the essential physics in one dimension.

The 1% violation of quasineutrality means that we will have a surplus of 0.01n ions.
This excess of positive charge creates an imbalance that leads to the development of
an electric field within the plasma. This will result in a charge density (charge per
unit volume) ρ = 0.01 e n. First, we write Poisson’s equation in one dimension, which
relates the spatial derivative of the electric field to the charge density:

∂E

∂x
=

ρ

ϵ0
(6)

The electric field in the plasma can be found by integrating this differential equation
over the plasma, which is straightforward since we assumed the violation in quasineu-
trality—and hence the charge density—to be uniform.

E(x) =

∫
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dx =

ρ
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∫
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=
ρ
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x+ C

Here C is an arbitrary constant of integration. To determine its value, we consider
that at the exact center of the plasma, the charged particles experience no net electric
field because the contributions from the surrounding particles on all sides cancel out.
This symmetry implies that the electric field E(x) must be zero at the center, i.e.,
E(0) = 0. Therefore, we set C = 0. The electrostatic force per unit volume, which is
the product of the charge density ρ and the electric field E(x), is then given by

Fe(x) = ρE(x) =
ρ2

ϵ0
x. (7)

To find the magnitude of this force for our specific plasma parameters, we calculate

|F | = (0.01n e)2d

ϵ0
=

(0.01 · 1020m−3)2(1.6× 10−19C)2 · 1.0m
8.85× 10−12 C2

Nm2

∼ 109N/m3. (8)
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b) We now compare this electrostatic force to other forces acting on the plasma, such as
gravitational and pressure forces:

• Gravity exerts a force per unit volume Fg = ρmg where ρm is the mass density,
so

Fg = (mene +mini)ng ≈ ming

≈ 10−27kg · 1020m−3 · 9.8m/s2

≈ 10−6N/m3

• Pressure is given by p = nT where we have to take care to convert the T into
Joules. For our plasma this is p = nT = 1020m−3 · 1.6×10−19 J/eV · 10×103 eV =
105N/m2. The force exerted per cubic meter of plasma is p/1m = 105N/m3

These forces are several orders of magnitude smaller than the electric force trying
to maintain quasineutrality, highlighting the dominant role of electrostatic forces in
restoring plasma neutrality.

4


