Lecture 2: Introduction (part 2)

Katerina Argyraki, EPFL

Questions

• What's underneath?

Questions

- What's underneath?
- Who owns what?

Questions

- What's underneath?
- Who owns what?
- How does it work?

application	web BitTo	orrent email	DNS
transport	ТСР	UDP	
network	IP		
link DSL	Cable Ethern	et _{WiFi} Cellul	ar Optical
physical	copper	fiber wire	eless

Questions

- What's underneath?
- Who owns what?
- How does it work?
- How does one evaluate it?
- How do end-systems share it?

Basic performance metrics

- Packet loss
 - the fraction of packets from src to dst that are lost on the way
 - in %, e.g., 1% packet loss
- Packet delay
 - the time it takes for a packet to get from src to dst
 - in time units, e.g., 10 msec

Basic performance metrics

Average throughput

- the average rate at which dst receives data
- in bits per second (bps)
- e.g., dst receives 1 GB of data in 1 min; average throughput = 8 10⁹ bits / 60 sec = 133.34 10⁶ bps = 133.34 Mbps

Delay vs. throughput

- Packet delay matters for small messages
- Average throughput matters for bulk transfers
- They are related to each other, but not in an obvious way

$\frac{\text{transmission delay}}{= \frac{\text{packet size}}{\text{link transmission rate}}}$ $= \frac{3 \text{ bits}}{1 \text{ Gbps}} = 3 \text{ nsec}$

packet delay = transmission delay + propagation delay

packet delay =

transmission delay over 1st link

- + propagation delay of 1st + 2nd link
- (+ delay to establish circuit, amortized over multiple packets)

transmission delay over 1st link + propagation delay of 1st link

packet delay =

transmission delay over 1st link

- + propagation delay of 1st link
- + queuing delay
- + processing delay
- + transmission delay over 2nd link
- + propagation delay of 2nd link

Queuing delay

- Given info on traffic pattern
 - arrival rate at the queue
 - nature of arriving traffic (bursty or not?)
- Characterized with statistical measures
 - average queuing delay
 - variance of queuing delay
 - probability that it exceeds a certain value

bit arrival rate: LA bits/sec

>

bit departure rate: R bits/sec

Queuing delay

- (Assuming infinite queue)
- Approaches infinity,
 if arrival rate > departure rate

bit arrival rate: LA bits/sec

bit departure rate: R bits/sec

0 usec 1 usec 2 usec 3 usec

bit arrival rate: LA bits/sec bit departure rate: R bits/sec

Queuing delay

- (Assuming infinite queue)
- Approaches infinity,
 if arrival rate > departure rate
- Depends on burst size, otherwise

Queuing delay upper bound: N L/R

Packet delay

- Many components: transmission, propagation, queuing, processing
- Depends on network topology, link properties, switch operation, queue capacity, other traffic

Transfer time = F/R + propagation delay

Average throughput = R

Transfer time = F/R + propagation delay 1st link + L/R' + propagation delay 2nd link

Average throughput = $\min \{R, R'\} = R$

bottleneck link

Bottleneck link

- The link where traffic flows at the slowest rate
- Could be because of the link's transmission rate or because of queuing delay

Questions

- What's underneath?
- Who owns what?
- How does it work?
- How does one evaluate it?
- How do end-systems share it?

Switch contents

• Queue

- stores packets
- Forwarding table
 - store meta-data
 - indicate where to send each packet

packet loss queuing delay

Packets treated on demand

"Connection switching"

Resources reserved in advance

Resource management

- Packet switching
 - packets treated on demand
 - admission control & forwarding decision: per packet
- "Connection switching"
 - resources reserved per active connection
 - admission control & forwarding decision: per connection

Treat on demand or reserve?

"Connection switching"

Predictable performance

"Connection switching"

Inefficient use of resources

Efficient use of resources

Unpredictable performance

We need congestion control

Resource management

- Packet switching
 - efficient resource use
 - no performance guarantees
 - simpler to implement,
 but requires congestion control
- "Connection switching"
 - performance guarantees
 - inefficient resource use

Each user is active w.p. 10%

With 35 users, 10 or fewer users are active w.p. 99.96%

Connection switching: 10 users Packet switching: about 35 users

Statistical multiplexing

- Many users share the same resource
- Not all of them can share it at the same time...
- but we do not expect them to be all active at the same time

Only 1 user active Downloading a 10 Gbit video file

Connection switching: 10 seconds Packet switching: 1 second

Connection switching through physical circuits

Many kinds of "circuits"

- Physical circuits
 - separate sequence of physical links per connection
- Virtual circuits
 - manage resources as if there was a separate sequence of physical links per connection

Many kinds of "circuits"

- Time division multiplexing
 - divide time in time slots
 - separate time slot per connection
- Frequency division multiplexing
 - divide frequency spectrum in frequency bands
 - separate frequency band per connection

Many kinds of "circuits"

- Different ways to implement "connection switching"
- Create the illusion of a separate physical circuit per connection

Treat on demand or take reservations?

Computer Networks

Eve (the eavesdropper)

tries to listen in on the communication, i.e., obtain copies of the data

Persa (the impersonator) pretends that she is Alice to extract information from Bob

Denis (the denial-of-service attacker)

disrupts the communication between Alice and Bob

distributed denial-of-service attack

disrupts the communication between Alice and Bob

Malik (the malware master) infects Alice and/or Bob with malware = bad software

Internet vulnerabilities

- Eavesdropping (sniffing)
- Impersonation (spoofing)
- Denial of service (dos-ing)
- Malware

What trust model to design for?

What physical infrastructure is already available?

What modularity & hierarchy?

What layers to define?

Treat on demand or take reservations?

What trust model to design for?