Lecture 2: Introduction (part 2)

Katerina Argyraki, EPFL

Questions

- What's underneath?

Questions

- What's underneath?
- Who owns what?
tier-1 ISP
tier-1 ISP

regional ISP

Computer Networks

Internet
 Exchange
 content provider

Point (IXP)

Computer Networks
18 Q

Questions

- What's underneath?
- Who owns what?
- How does it work?

application
 web BitTorrent email DNS

transport
 TCP
 UDP

network
IP

link
 DSL Cable Ethernet WiFi Cellular Optical

physical
copper
fiber
wireless

Questions

- What's underneath?
- Who owns what?
- How does it work?
- How does one evaluate it?
- How do end-systems share it?

Basic performance metrics

- Packet loss
- the fraction of packets from src to dst that are lost on the way
- in \%, e.g., 1% packet loss
- Packet delay
- the time it takes for a packet to get from src to dst
- in time units, e.g., 10 msec

Basic performance metrics

- Average throughput
- the average rate at which dst receives data
- in bits per second (bps)
- e.g., dst receives 1 GB of data in 1 min ; average throughput $=810^{9}$ bits $/ 60 \mathrm{sec}=$ $133.3410^{6} \mathrm{bps}=133.34 \mathrm{Mbps}$

Venoge

Eglise
St Sulpice

Venoge

Eglise St Sulpice

St Sulpice

Delay vs. throughput

- Packet delay matters for small messages
- Average throughput matters for bulk transfers
- They are related to each other, but not in an obvious way

transmission delay

$$
=\frac{\text { packet size }}{\text { link transmission rate }}
$$

$$
=\frac{3 \text { bits }}{1 \mathrm{Gbps}}=3 \mathrm{nsec}
$$

propagation delay
link length
link propagation speed

$$
=\frac{1 \text { meter }}{310^{8} \text { meters per sec }}=3.34 \mathrm{nsec}
$$

packet delay =

transmission delay

+ propagation delay

circuit switch

packet delay $=$
transmission delay over 1 st link

+ propagation delay of 1 st +2 nd link
(+ delay to establish circuit, amortized over multiple packets)

store \& forward switch

transmission delay over 1st link

+ propagation delay of 1st link

store \& forward switch

transmission delay over 1st link

+ propagation delay of 1 st link
+ queuing delay
+ processing delay
+ transmission delay over 2nd link
+ propagation delay of 2 nd link

Queuing delay

- Given info on traffic pattern
- arrival rate at the queue
- nature of arriving traffic (bursty or not?)
- Characterized with statistical measures
- average queuing delay
- variance of queuing delay
- probability that it exceeds a certain value

packet size: L bits

R bits/sec
bit departure rate:
R bits/sec

\square

bit arrival rate:
LA bits/sec
bit departure rate: R bits/sec

Queuing delay

- (Assuming infinite queue)
- Approaches infinity,
if arrival rate > departure rate

I

bit arrival rate:
LA bits/sec
bit departure rate: R bits/sec

0 usec
 1 usec
 2 usec
 3 usec

bit arrival rate:
LA bits/sec
bit departure rate:
R bits/sec

Queuing delay

- (Assuming infinite queue)
- Approaches infinity,
if arrival rate > departure rate
- Depends on burst size, otherwise

Queuing delay upper bound: N L/R

Packet delay

- Many components: transmission, propagation, queuing, processing
- Depends on network topology, link properties, switch operation, queue capacity, other traffic
transmission rate R bits/sec

file of size F bits
packets of size L bits

Transfer time $=\quad F / R$

+ propagation delay

Average throughput $=R$
transmission rate $R \quad$ transmission rate $R^{\prime}>R$

file of size F bits
packets of size L bits

Transfer time $=F / R+$ propagation delay 1 st link + L/R' + propagation delay 2nd link

Average throughput $=\min \left\{R, R^{\prime}\right\}=R$

transmission rate R1

transmission rate R 2

transmission rate $\mathrm{R} \gg \mathrm{R} 1, \mathrm{R} 2$

Bottleneck link

The link where traffic flows at the slowest rate

- Could be because of the link's transmission rate or because of queuing delay

Questions

What's underneath?

- Who owns what?
- How does it work?

How does one evaluate it?

- How do end-systems share it?

Switch contents

- Queue
- stores packets
- Forwarding table
- store meta-data
- indicate where to send each packet

Packet switching

Packets treated on demand

"Connection switching"

Resources reserved in advance

Resource management

- Packet switching
- packets treated on demand
- admission control \& forwarding decision: per packet
- "Connection switching"
- resources reserved per active connection
- admission control \& forwarding decision: per connection Treat on demand or reserve?

"Connection switching"

Predictable performance

"Connection switching"

Packet switching

Packet switching

Packet switching

Unpredictable performance

Packet switching

Resource management

- Packet switching
- efficient resource use
- no performance guarantees
- simpler to implement, but requires congestion control
- "Connection switching"
- performance guarantees
- inefficient resource use

Each user is active w.p. 10\%
With 35 users, 10 or fewer users are active w.p. 99.96\%

10 Gbps
video
server

Connection switching: 10 users Packet switching: about 35 users

Statistical multiplexing

- Many users share the same resource
- Not all of them can share it at the same time...
- but we do not expect them to be all active at the same time

Only 1 user active
Downloading a 10 Gbit video file

10 Gbps
video
server

Connection switching: 10 seconds Packet switching: 1 second

Circuit switching

Connection switching through physical circuits

Many kinds of "circuits"

- Physical circuits
- separate sequence of physical links per connection
- Virtual circuits
- manage resources as if there was a separate sequence of physical links per connection

Many kinds of "circuits"

- Time division multiplexing
- divide time in time slots
- separate time slot per connection
- Frequency division multiplexing
- divide frequency spectrum in frequency bands
- separate frequency band per connection

Many kinds of "circuits"

- Different ways to implement "connection switching"
- Create the illusion of a separate physical circuit per connection

Treat on demand or take reservations?

Alice

Bob

Eve (the eavesdropper)

tries to listen in on the communication, i.e., obtain copies of the data

Alice

Persa (the impersonator) pretends that she is Alice to extract information from Bob

Alice

Denis (the denial-of-service attacker)
disrupts the communication between Alice and Bob

Alice Bob

\bigcirc
distributed denial-of-service attack
disrupts the communication between Alice and Bob

Alice

Malik (the malware master)
infects Alice and/or Bob
with malware = bad software

Internet vulnerabilities

- Eavesdropping (sniffing)
- Impersonation (spoofing)
- Denial of service (dos-ing)
- Malware

What trust model to design for?

What physical infrastructure is already available?

What modularity \& hierarchy?

What layers to define?

Treat on demand or take reservations?
What trust model to design for?

