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Exercise 1 - Combustion, Fission or Fusion?

a) Each chemical reaction releases QN = 6.5 · 10−19J of energy. This energy is transported
by the reaction products. A mixture of carbon and oxygen with a total weight of 1 kg
releases

Qm = QN ·NA ·n = QNNA
m

MC +MO2

(1)

where NA = 6.02 · 1023 mol−1 is Avogadro’s number, MC and MO2 the molar masses
of carbon and oxygen. Note that for a molecule X, MX/NA is the mass per mole of
X divided by the number of atoms/molecules of X in a mole, so this ratio corresponds
to the mass mX of a single atom/molecule of X. As a result, the formula above can
also be understood as the energy per reaction multiplied by the ratio of fuel mass over
the mass of the reactants in one reaction; this ratio is thus the number of reactions
possible with the available amount of fuel.
With a power consumption P = Q/t we will therefore have enough energy for

t =
Qm

P
=

QNNAm

P (MC +MO2)
= (2)

=
6.5 · 10−19J · 6.02 · 10231/mol · 103g
18780 · 103Wh/year · 3600s/h

3.14 · 107s/year · 44 g/mol
= 1.15 h

b) In a traditional nuclear power plant, the absorption of a neutron (n) by a nucleus of
uranium-235 causes the fission of the uranium nucleus into two lighter elements. The
energy released by a single isotope of uranium-235 is

QN = ∆mc2 =
{

(mn +mU)− (mCe +mZr + 2mn)
}
c2 = (3){

(1.0087 u + 235.04 u)− (139.91 u + 93.91 u + 2 · 1.0087 u)
}
×

×1.66 · 10−27kg · (3 · 108m/s)2 = 3.2 · 10−11 J

This energy is transported by the reaction products (in the form of kinetic energy). A
mixture of U-235 and neutrons with a total mass of 1kg will release an energy of

Qm = QN ·NA ·n = QN
NAm

MU +Mn

(4)
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with NA = 6.02 · 1023 mol−1 (Avogadro’s number), MU and Mn the molar masses of
U-235 and of the neutron. For a power consumption of P = Q/t there will therefore
be enough energy for

t =
Qm

P
=

QNNAm

P (MU +Mn)
= (5)

=
3.2 · 10−11 J · 6.02 · 1023 1/mol · 103 g

18780 · 103 Wh/year · 3600s/h
3.14 · 107s/year · 236 g/mol

= 1.2 · 103 years

c) The fusion of two hydrogen atoms, in our case the isotopes deuterium (D) and tritium
(T), yields

QN = ∆mc2 =
{

(mD +mT )− (mHe +mn)
}
c2 = (6){

(2.014 u + 3.0164 u)− (4.0027 u + · 1.0087 u)
}
×

×1.66 · 10−27kg · (3 · 108m/s)2 = 2.8 · 10−12 J

The energy released by 1kg of fusion fuel (a 50:50 mixture of D-T):

Qm = QN
NAm

MD +MT

(7)

Which is sufficient for consumption over a period of

t =
Qm

P
=

QNNAm

P (MD +MT )
= (8)

=
2.8 · 10−12 J · 6.02 · 1023 1/mol · 103 g

18780 · 103 Wh/years · 3600s/h
3.14 · 107s/years · 5 g/mol

= 5.0 · 103 years

2



Exercise 2 - A “small” Tokamak

a) The fusion power for a reaction between fusion fuels can be calculated simply by
multiplying the energy per reaction ⟨∆E⟩ times the reaction rate in the total volume:
(n1n2⟨σv⟩V )∆E.

We can then calculate the fusion power for D-T reactions: PDT = Pα + Pn

Pα = nDnT ⟨σv⟩DTV∆Eα (9)

=

(
1

2
× 1020m−3

)2

× 10−22m
3

s
× 3.5× 106eV × 1.6× 10−19 J

eV
× 10m3 ≃ 1.4MW

Pn = nDnT ⟨σv⟩DTV∆En (10)

=

(
1

2
× 1020m−3

)2

× 10−22m
3

s
× 14× 106eV × 1.6× 10−19 J

eV
× 10m3 ≃ 5.6MW

PDT = Pα + Pn = 1.4MW+ 5.6MW = 7MW

For D-D reactions we need the average energy per reaction, which is simply 1
2
(4 +

3.25)MeV ≃ 3.625MeV.

PDD =
1

2
nDnD⟨σv⟩DDV ⟨∆E⟩DD (11)

=
1

2

(
1020m−3

)2

× 10−24m
3

s
× 3.625MeV × 1.6× 10−19 J

eV
× 10m3

≃ 29kW

Here a factor of 1
2
is introduced to avoid counting the same reaction twice.

b) We can now compute the physics fusion gains:

QDT =
Pf

Pin

=
7MW

28MW
= 25% (12)

QDD =
Pf

Pin

=
14.5 kW

28MW
= 0.05% (13)

We already see that we are far from break-even (Q=1) for both cases.

The Lawson parameter for break-even at T = 10 keV is neτE > 1020 sm−3. The
confinement time is given by

τE =
Wtot

Pl

(14)

where Pl is the losses power. To obtain Pl we consider that in steady-state (i.e. to
keep a constant plasma energy) we have Pl = Pin + Pα. However, we have seen in
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question a) that Pα = 1/5Pf << Pin, namely no significant fusion power is generated,
so we can take Pl ≈ Pin. The total energy Wtot can be calculated as:

Wtot =
3

2
ne(Te + Ti)V =

3

2
1020m−3 × 20× 103eV × 1.6× 10−19 J

eV
× 10m3 = 4.8MJ

We can calculate the confinement time:

τE =
Wtot

Pl

≃ Wtot

Pin

=
4.8MJ

28MW
= 0.17 s

so
neτE = 1.7× 1019m−3 s

Which is about one order of magnitude lower than the break-even requirement.

Note: In the presence of a significant α-particle fraction we should have considered
that they contribute to the population of positively charged particles. In that case,
the quasi-neutrality condition would be nα + nT + nD = ne instead of nT + nD = ne.

c) In order to calculate the wall loading (MW/m2) of our “small” tokamak, one needs
first to find the surface area in which the total power will be distributed. The surface
area of a torus with a circular cross-section is given by

Atorus = 4π2rR0

where r is the minor radius of the torus, while the volume of a torus is given by

Vtorus = 2π2r2R0

Figure 1: Toroidal coordinates.

Using this two equations, one find that

Atorus =
√

8π2R0Vtorus
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Substituting, in this last equation, the values given for R0 = 1 m and Vtorus = 10 m3,
one obtain Atorus = 28.1 m2. The effective area where the wall loading is concentrated1

is then:

A1/10 =
Atorus

10
≃ 2.8m2

In computing the wall loading, one has to consider the heat flux given by the neutrons,
by the α particles and by the losses (mainly radiation and out-flux of particles). The
resulting wall load is then:

q1/10 =
Pn + Pα + Pin

A1/10

=
5.6 MW+ 1.4 MW+ 28 MW

2.8 m2
= 12.4 MW/m2

This value is higher than the provided limit value, which approximately corresponds
to the heat flux supported by the materials we consider today.

1This assumption is simplistic since the neutrons and most of the radiation losses coming form the
plasma are emitted almost isotropically and cannot be concentrated in such a small region.
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Exercise 3 - The effect of impurity contamination on

the plasma power balance

Note that the index indicating the charged state of the impurities will be omitted in what
follows.

1. a) The bremsstrahlung radiation emitted by carbon impurities is:

PC
rad = nCneRC V = 0.04n2

e RC V (15)

= 0.04× 4× 1040 m−6 × 10−34 Wm3 × 10m3 ≃ 1.6 MW

The quasi-neutrality condition of the plasma constrains the DT density. Having
a carbon concentration of nC = 0.04 ne it follows that:

nDT = ne − ZCnC = ne(1− 6× 0.04) = 0.76 ne

The fractional reduction of the fusion power due to dilution of the fusion fuel
from carbon impurity contamination is then:

F = 1− PC
dilu

Pnorm

= 1− nD nT ⟨σv⟩DT∆Ef

1
4
n2
e⟨σv⟩DT∆Ef

= 1−
1
2
nDT

1
2
nDT ⟨σv⟩DT∆Ef

1
4
n2
e⟨σv⟩DT∆Ef

(16)

= 1− (0.76ne)
2

n2
e

= 0.422 ≃ 42%

b) Proceeding in the same way of the previous question, using tungsten data, we
obtain:

PW
rad = nWneRW V = 10−5n2

eRW V (17)

= 10−5 × 4× 1040 m−6 × 10−31 Wm3 × 10m3 ≃ 400 kW

nDT = ne − ZWnW = ne(1− 50× 10−5) = 0.9995 ne

F = 1− PW
dilu

Pnorm

= 1− (0.9995ne)
2

n2
e

= 10−3 ≃ 0.1% (18)

2. One of the aspects that should be considered in a future fusion reactor is that the
produced α particles (Helium) have to be exhausted once they have exchanged their
fusion energy with the plasma. They would otherwise deteriorate the plasma purity,
setting higher constrains on the ignition condition. This implies that the confine-
ment time of α particles has to be low enough to guarantee a small concentration
of them. This can be quantified with the parameter ρ∗ and the consequent ignition
curves shown in the figure of the problem set. A higher value of ρ∗ means a higher
confinement time of He with respect to the plasma energy confinement time, so a
higher concentration of He. As a consequence, the ignition condition corresponds
to a smaller region in the parameter space “neτe vs. T”.
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