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1 Definition of Plasma page 1

Chapter 1 Definition of Plasma

1. Ensemble of free charged particles

2. Globally neutral(∗)

3. Exhibiting collective behavior

We will discuss condition (1) and its implications later. Let’s first review (2) and (3).

1.1 Static properties of plasmas

1.1.1 Plasmas are globally neutral

How easy is it for a plasma to stay neutral? The strength of the restoring force that would result
from a deviation from neutrality is enormous, compared to other forces as gravity and pressure
force.
Let’s consider a simple model: a one-dimensional (slab) plasma composed by protons and electrons.
Suppose that the ion density is slightly higher than the electron density, say (ni − ne)/ne ' 1%
everywhere:

Charge density ρ = e(ni − ne) ' 10−2ene (1.1)

Inside the slab ∇ · E =
ρ

ε0

(1.2)

1–D along x
dE

dx
=

10−2ene
ε0

=⇒ E(x) =
10−2ene
ε0

x (1.3)

Note that E(x) ≶ 0 for x ≶ 0: ions are pushed away and electrons are pulled in (see figure 1.1).

+

+
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+

+

+

+

+

+
+
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− −
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−

−

−

−
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−

−
−

−

+

x

Fon ions

Fon electrons

Fon electrons

Fon ions

E(x)

Figure 1.1: The force due to the electric field (resulting from a deviation from neutrality) pushes ions out and
drags electrons inside the plasma.

(∗) Sometimes are called ‘plasmas’ also non-neutral collections of particles of the same species (e.g. electrons),
confined by means of electrostatic external fields. Here and in the following we will only consider globally
neutral plasmas.
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1.1 Static properties of plasmas page 2

The resulting force tries to remove the excess of positive charge. Let us estimate the strength
of the force density and compare it to that due to the gravity(†) and that due to the pressure.
Assume x ' 1 m, T = 1 keV, ne = 1019 m−3:

e.s. force

volume
= ρE =

(10−2ene)
2

ε0

x ' 3 · 107 N

m3
(1.4)

gravity force

volume
' nmig ' 10−7 N

m3
� e.s. force (1.5)

pressure force

volume
=
p

x
=
neT

x
' 1019 × 1.6 · 10−19 × 103

1
= 1.6 · 103 N

m3
� e.s. force (1.6)

As we can see from the examples reported above, the e.s. force that brings the plasma back to a
condition of global neutrality is dominant, and thus the plasma remains globally neutral.
This is an example of the fact that plasma dynamics is governed by long–range electrostatic
(electromagnetic) interactions.

1.1.2 Collective behavior (Debye shielding)

The neutrality condition niqi − nee = 0 (or ne =
M∑
j=1

Zjnj with M = number of ion species) is

only an average property. If we go close enough to a single particle, obviously, neutrality breaks.
Question is: How close is ‘close enough’?
This is something you have learnt in Plasma I course. Let’s review the main results (the formal
derivation is reported in appendix A).

In plasmas the main quantities as particle density (velocity), charge density (currents) and e.s.
fields (e.m. fields) are intrinsically coupled. To break the closed self-consistent loop existing
between these quantities (figure 1.2.a) one has to choose a model for the plasma.

electron/ion densities
particle positions

(velocities)
ne(x, t), ni(x, t)

-

charge densities
(currents)

ρ(x, t), j(x, t)

�
�
�

�
�
�	

e.s. fields
(e.m. fields)

E(x, t), B(x, t)
@

@
@

@
@
@I

(a)

+

+

++

+

+

+

+

+

+
+

+
+

+

++

+

− −

−

−
−

−

− −

−
−

−

−

−
−

−

−

−

−

+
test ion

(b)

Figure 1.2: (a) Particle, current and field distributions form a self–consistent loop characterising the plasma.
(b) What happens to a test particle (a single ion) inside a plasma?

(†) We consider here the gravity force acting on ions. For electrons the same type of force is even smaller, by a
factor me/mi.
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1.1 Static properties of plasmas page 3

Take a single ion and place it in the plasma (figure 1.2.b). What do we expect? It will be
surrounded by a cloud of electrons feeling its potential. You have already calculated the distri-
bution of the potential and the electron density around the ion. In Plasma I you have assumed
Ti = 0, and electrons described by Maxwell-Boltzmann distribution: f(v) = A exp(−energy

T
) =

A exp
{
−

1
2
mv2−eφ
T

}
, (φ is the potential), which integrated over v gives ne = n0 exp( eφ

T
). You have

also assumed eφ
T
� 1, so that ne ≈ n0(1 + eφ

T
).

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

r/ λ
D

φ(
r)

 [a
rb

it
ra

ry
 u

ni
ts

]

1/r (single charge in vacuum)

Debye screened potential
(equation 1.7)

Figure 1.3: Debye screened potential (straight line): The correction of the vacuum potential (dotted line) is small,
but essential.

The solution for the potential in a spherically symmetric case is (figure 1.3):

φ(r) =
e

4πε0

1

r︸ ︷︷ ︸
singe charge
in vacuum

× exp

{
− r

λD

}
︸ ︷︷ ︸

term due to plasma
collective interactions

(1.7)

ne(r) ' ne0

{
1 +

eφ

T

}
= ne0

(
1 +

e2

4πε0T

1

r
exp

{
− r

λD

})
= ne0 +

ne0
3
gp
λD
r

exp

{
− r

λD

}
︸ ︷︷ ︸

δne > 0

(1.8)

where λD :=
√
ε0T/ne,0e2 is the Debye length, gp := N−1

D � 1 is the plasma parameter , and
ND = 4

3
πλ3

Dne,0 is the number of particles inside a Debye sphere.

Note that in the expression

λD =

√
ε0T

ne,0e2
:

thermal effect

space charge effect
(1.9)
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1.1 Static properties of plasmas page 4

T is related to the thermal motion trying to violate neutrality and n0e
2/ε0 to the space–charge

force trying to restore neutrality. The Debye shielding is invisible for r � λD – as if a single
charge was placed in the vacuum.

The term δne represents a positive, but small perturbation: as expected the electrons tend to
‘accumulate’ around the positive charge.
Plasma can exhibit a static collective behavior if:

• Enough particles are in a Debye sphere so that they can give the ‘screening’

ND =
4

3
πλ3

Dn0 � 1 (1.10)

or equivalently the plasma parameter gp is such that gp = N−1
D � 1

• Plasma dimensions are larger than the Debye length λD

λD � Lplasma (1.11)

In the table below we’ll compare ideal gases and plasmas in terms of some statistical quantities,
the range of interaction, the average distance between particles and the ratio between kinetic and
potential energy.

Ideal Gas Plasma

Average inter–particle
distance

n−
1
3 n−

1
3

Range of interaction � n−
1
3 ∼ λD � n−

1
3

(a)

Ekinetic

Epotential

� 1

=
T

1
4πε0

e2

r

=
T

e2/4πε0n
− 1

3

(b)
= 4πλ2

Dn
2
3

(c)
= 4π

(
3

4π

) 2
3N

2
3
D � 1 (d)

(a) Does this mean that plasmas are completely different from ideal gas in terms of their statistical mechanics?
(b) solve (1.9) for T
(c) solve (1.10) for λD
(d) As in ideal gases, despite the long range of interactions! This means that the concepts and methods of

thermodynamics are valid and applicable in the plasma state.

Table 1: Comparison between Ideal Gas and Plasma

We have seen a characteristic length for screening of electrostatic perturbation in plasmas, λD,
as the first and most fundamental evidence of collective behavior. But we have dealt with static
perturbations only. What about the dynamical response of the plasma, i.e. the characteristic time
associated with a local displacement from quasi–neutrality?
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1.2 Dynamic properties of plasmas page 5

1.2 Dynamic properties of plasmas

Heuristic Approach

Thermal motion of electrons vthe ∼
√

T

me

(1.12)

Characteristic length λD =

√
ε0T

e2n
(1.13)

Characteristic time τ =
λD
vth

=

√
ε0T/e2n√
T/m

=

√
ε0m

e2n
(1.14)

Characteristic frequency ωp =
1

τ
=

√
e2n

ε0m
“plasma frequency” (1.15)

You have completed the formal calculation(‡) in Plasma I. From

∇ · E =
ρ

ε0

, m
du

dt
= −eE, ∂n

∂t
= −∇ · (nu) (1.16)

you have obtained for the perturbed density

∂2ñ

∂t2
+ ω2

pñ = 0, (1.17)

the equation of a harmonic oscillator of angular frequency ωp. Numerically

fp[Hz] =
ωp
2π
' 9
√
n[m−3] (1.18)

For example one finds the following values:

Aurora fp ∼ 9
√

1012 = 9 MHz.

Tokamak fp ∼ 9
√

1020 = 90 GHz.

Note that for a wave to be able to propagate in a cold unmagnetized plasma, its angular frequency
must be ω � ωp. Otherwise the plasma electrons have enough time to respond and cancel the
external excitation (i.e. the wave electric field).
Also note that, for dynamical collective effects to manifest, the oscillations at the frequency ωp
should not be prevented by collision processes. Stated otherwise, it should be ωp > νcollisions.

(‡) see notes on http://crpp.epfl.ch/physplas1/program.html
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2 Production of plasmas page 6

Chapter 2 Production of plasmas

2.1 Ionisation and Recombination

Ionisation of the neutral atoms is a “necessary condition” to have a plasma. This is an exam-
ple of inelastic collisions. Figure 2.1 shows the most important ionisation and recombination
mechanisms.

p+ p+ p+

e−

e−

e−

e−

e−

e−

e−

p+
e−

e−

p+

p+

e−

(a) impact ionisation
(b) Three−body recombination

IONISATION RECOMBINATION

photon
e−

e−

p+ p+

inverse process

inverse process

νh

νh

(c) Radiative ionisation (d) Radiative recombination

Figure 2.1: Main ionisation and recombination processes. For radiative ionisation to take place, the photon
energy Ephoton = hν is required to exceed the ionisation energy Ei.

Both mechanisms of ionisation shown in figure 2.1 are present in nature, e.g.

• Aurora (strong magnetic field): Impact ionisation dominates (a)

• Nebula (no magnetic field): Radiative ionisation dominates (c)

High energy photons are required for the radiative ionisation. Ei = 13.6 eV for hydrogen, λ =
hc
Ei
' 50 nm (ultraviolet range). In the absence of strong UV fluxes, impact ionisation is the

dominant mechanism for plasma production. This is the case for common laboratory plasmas,
where strong UV sources are unavailable.
For typical densities of plasmas in the laboratory and in space, three–body recombination is very
unlikely and can in general be neglected. Other types of ionisation/recombination processes are
also possible(§), but they are usually negligible compared to the processes shown in figure 2.1.
The equilibrium of impact ionisation and radiative recombination can be used to characterise
many plasmas. Such equilibrium is called ‘coronal’ , as it is believed to regulate the solar corona
parameters.

(§) Examples:
Charge–exchange recombination : H+ +H− → 2H
Dissociative recombination (only for molecules): e+ (AB)+ → A+B
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2.1.1 Single Particle Cross–Sections

Impact ionisation and radiative recombination are collisional phenomena and as such they can be
described by a cross–section, σ (figure 2.2).

in

Figure 2.2: The collision probability of an electron beam incident on a homogenous distribution of neutral par-
ticles is equal to the ratio of the cross–section σ of this process and the section S of the beam.

Basic Notions

• For a single electron:

# of collisions = S vin dt︸ ︷︷ ︸
volume V

ntargets︸ ︷︷ ︸
# of targets

σ
S︸ ︷︷ ︸

probability of collisions
in volume V

# of collisions

unit time
= ntargetsσvin, where ntargets =

# of targets

unit volume
(2.1)

and vin is the relative velocity between incoming particles and targets. The density of the
targets ntargets is assumed to be constant and uniform.

• For ionisation:

# of ionisations

unit time
= nnσionvel, (2.2)

where nn is the neutral particle density and vel the electron velocity(¶)

• Mean–free path:

λmfp
ion :=

1

nnσion

(2.3)

(¶) We assume vel � vn, since me � mn.
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Properties

Figure 2.3 shows the ionisation/recombination cross–sections for one single electron as a function
of electron energy.

~10 E [eV]

σ

~150

2
~   aπ

0
σ

ion

rec

Figure 2.3: Cross–sections ω for ionisation and recombination processes. Note that no ionisation occurs below
the ionisation energy (Ei ∼ 10 eV).

Note that

• σion depends on the electron velocity (energy)

• σion ≡ 0 for E < Ei, where Ei is the ionisation threshold energy(‖)

• σion increases with energy, but not indefinitely.

• σrec (recombination cross–section) decreases with energy

The third point can be intuitively justified by means of the duality established by the quantum me-
chanics between particles and waves with a convenient wavelength. If we associate to an electron
its de Broglie wavelength λel = h

meve
(h is the Planck constant), the maximum interaction between

the electron and the neutral is expected for λel ∼ 2a0, see figure 2.4. For example, σion = σmax
ion for

H–atom at λ ∼ 2a0 → E ∼ 100–200 eV.

Figure 2.4: Qualitative explanation based on quantum mechanics of the dependence of σion upon the energy of
the colliding electron. The interaction is expected to be maximum at λ ∼ 2a0

(‖) e.g. H–atom:

Ei '
1

2

e2

4πε0a0
' 13.6 eV, where a0 =

4πε0~2

mee2
' 5 · 10−11 m (2.4)

is the Bohr radius of the H–atom.
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The decreased efficiency of the recombination process results from the reduced interaction time
between particles as the relative velocity increases.

You have seen in Plasma I that in practice we produce ionisation by injecting a known pressure of
gas in a vacuum chamber, which was previously brought to very low base pressures. The pressure
of the injected gas is in general much lower than atmospheric so that enough energy can be given
to electrons between collisions by an applied voltage:

E =
e∆V

d
λmfp (2.5)

where d is the distance between the electrodes across which a potential difference ∆V is applied
(figure 2.5).

Figure 2.5: A voltage ∆V is applied between two electrodes (distance d in between) to accelerate the electrons
and sustain a plasma discharge.

Examples : Which is the voltage to ionize the gas?

a.) Spark plug: electrode gap d ' 1 mm, ∆V ' 1 kV.

b.) Lightning: discharge height d ' 1 km, ∆V ' 1 GV.

c.) Plasma monitor: noble gaz at very low pressure (high λmfp) in tiny cells, sandwiched between
electrodes.

2.1.2 Average Cross–Sections

Up to now we dealt with a single electron. Let us now consider a distribution, for example a
Maxwellian characterised by a temperature T .
To calculate the ionisation rate for a distribution we need to average over such distribution the
expression that gives the number of ionising collisions per unit time, which in general depends on
energy.

Ionisation rate =
〈# of ionisations

unit time

〉
= nn〈σionve〉 (2.6)

where nn is the density of neutrals playing the role of ‘targets’. Thus

〈σionve〉 =

∫
dvefe(ve)σion(ve)ve∫

dvefe(ve)
, (2.7)

where ve is the velocity of electrons. Figure 2.6 shows the result as a function of the temperature.
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σ<          v  >

σ<          v  >rec

ion 

e

e

T  [eV]e

σ<     v >

Figure 2.6: 〈σionve〉 as a function of T . Note that 〈σionve〉 6= 0 for T < Ei, as even then there will be some
particles with energy greater than Ei, i.e. able to ionise

2.1.3 Equilibrium between impact ionisation and recombination

The equilibrium condition between impact ionisation and radiative recombination can be expressed
as:

nn〈σionve〉 = ne〈σrecve〉, or
ne
nn

=
〈σionve〉
〈σrecve〉

. (2.8)

The ratio ne/nn
(∗∗) is called degree of ionisation. Clearly it increases with the temperature of the

plasma.
The exact expression for ne/nn depends on the assumptions taken for the equilibrium. Consider
the simplest model for hydrogen: a global thermodynamical equilibrium (G.T.E.), where all species
are characterised by the same temperature T : Te = Ti = Tn ≡ T . Note that this condition is
rarely satisfied in plasmas. Under such assumptions and with ne ≈ ni one finds the so–called Saha
equation

ne
nn
' 3 · 1027T

3/2[eV ]

ni[m−3]
exp

{
− Ei
T

}
. (2.9)

A good representation of the transition to plasma state is given by the quantity

α = ne/(ne + nn) (2.10)

called the relative degree of ionisation (see figure 2.7).

(∗∗) Note that ne ≈ ni in plasmas.
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Saha equation  −  E i=13.6 eV, nn=1019 m−3

PLASMA  STATE 

Figure 2.7: Relative degree of ionisation α for a hy-
drogen plasma of density nn = 1019 m−3.
The dotted line indicates T = Ei/10.

The transition is made sharp by the exponential
term in Saha equation. We can consider this
as a phase transition. For T > Ei ionisation is
practically 100%.
Note that ‘life’ (T � 1 eV, n � 1020 m−3) is
incompatible with plasma state, although, as we
know, most of the energy that is necessary for
life comes from fusion reactions that occur in the
Sun. However, it is possible to have a plasma
at very low T , if the density is very low, e.g.
interstellar plasma, ne ∼ 106 m−3.
Ordinary matter lies in a very small corner of
the T , n diagram (see figure 2.8). We will con-
sider plasmas over a wide range, but below ener-
gies at which relativistic effects become impor-
tant (T � 500 keV).
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Solids,
liquids,

and gases.
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CHARACTERISTICS OF TYPICAL PLASMAS

Figure 2.8: Characterisation of typical plasmas.
(††)

(††) Image courtesy of Contemporary Physics Education Project (CPEP), http://FusEdWeb.llnl.gov/
CPEP/
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Example 1

Air at room temperature and pressure. Consider
N2:

Ei ∼ 14.5 eV, T ∼ 1

40
eV, nn ∼ 1025 m−3 =⇒ ne

nn
≈ α < 10−100

(2.11)

→ Thermal ionisation in air is negligible (of course, ionisation by non-thermal particles, such
as from cosmic rays, is possible).

→ The exponential factor in Saha equation becomes non–negligibly small for T approaching Ei
(but, again, we can have T < Ei).

Example 2

Solar corona

T ∼ 500 eV, ne ∼ 1013 m−3 =⇒ ne
nn
∼ 3 · 1018 or

ne
ne + nn

' 1 (2.12)

→ The plasma is completely ionised.

2.1.4 Weak vs. Strong Ionisation

Definition: Weakly ionised plasma
charged particles ↔ neutral collisions dominate

Definition: Strongly ionised plasma
charged particles ↔ charged particles collisions dominate

The quantities to compare are the respective mean free paths. For a strongly ionised plasma we
have

niσCoulomb > nnσion, λCoulomb
mfp < λion

mfp, (2.13)

where σCoulomb is the cross–section for Coulomb (electrostatic force) collisions. We will calculate
σCoulomb later in the course, but we can have a first, rough estimate by considering

σCoulomb ' πb2, (2.14)

where b := e2/4πε0T (“Landau length”) is the distance at which the electrostatic energy is equal
to the thermal energy. Note that we should expect an effective length for collective e.s. interactions
larger than b, hence a larger cross–section, as particles will ‘keep interacting’ at distances larger
than b since we are still within the Debye sphere (for most plasmas of interest b << λD).
Taking σion ' πa2

0 for hydrogen we can evaluate the degree of ionisation above which we have a
strongly ionised plasma

ne
nn

>
σion

σCoulomb

∼ πa2
0

πb2
= a2

0

(
4πε0

e2

)2

T 2 = 1.2× 10−3T 2[eV]. (2.15)

Example

A neon tube has an electron temperature of about 10 eV (see figure 2.8). Equation (2.15) yields
ne/nn > 12%. For example, if ne/nn ∼= 20%, and there are more neutrals than electrons, the tube
contains a strongly ionized plasma where collisions among charged particles dominate. The reason
for this is the long range of interaction of the Coulomb force.
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Chapter 3 Charged particle collisions

We have seen that collisions between electrons and atoms can produce ionisation, with σmax
ion ∼

πa2
0 (a0 ≡ Bohr radius). For these collisions the range of interaction is very short, namely about a0.

In Plasma I you have seen that at high enough energies (E & 10 keV) nuclei can collide and
produce nuclear fusion reactions. Also, in this case the range of interaction is very short, of the
order of the size of the nuclei, namely about 10−15 m.

Both of these are examples of inelastic collisions . We now focus on collisions between charged
particles, occurring once the plasma is formed. Collisions of charged particles are the result of the
long–range Coulomb force and can be considered as elastic(∗).

We define as ‘collision’ the binary interaction between two charged particles.

This approach of considering the trajectory of a particle affected by a number of binary interac-
tions (collisions) is only an approximation. In reality, the trajectory of a particle is affected by
many other particles (those within the Debye sphere) at once. We will need to find a way to ac-
count for this effect, and we will do it by considering the combined effect of many binary collisions.

We have seen that a plasma with much less ions/electrons than neutral atoms can still be strongly
ionised in the sense that Coulomb collisions can dominate over collisions with neutrals. This is
due to the long range of Coulomb collisions. Based on a very simple model we took the Landau
length b, such that

e2

4πε0b
∼ T ⇒ b ∼ e2

4πε0T
and σ Coulomb ∼ πb2 ∼ 10−17

T 2
[eV]

[m2]

Now we need to calculate σCoulomb properly, in particular considering multiple small–angle colli-
sions. We will find that

σCoulomb � πb2

and we will be in a position to evaluate the effective collision cross-section or frequency for the
different processes of interest. We will evaluate:

• Energy transfer rates (thermalisation, equilibrium, heating)

• Momentum transfer rates (isotropisation, “pitch angle” scattering)

• Plasma resistivity (drag)

• Diffusion rates (transport of particles across and along the magnetic field B)

This analysis will occupy this section of the course.

(∗) Charged particles, if accelerated, emit radiation, so they loose energy. For example, electrons deflected by
collisions with ions in fusion plasmas emit radiation (Bremsstrahlung) in the form of X-rays. Radiated energy

1
2mev

2 ∼(
v
c

)3 � 1. Here we neglect the power loss by radiation and consider Coulomb collisions as elastic.
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3.1 Two particles interacting via Coulomb potential

We just review the lines of the calculation, as you have seen it in lecture 3 of Plasma Physics I.

initial

v1; v2

m1, q1;m2, q2

=⇒
=⇒

final

v′1; v′2
m1, q1;m2, q2

Note that the mass and the charge are conserved. In elastic collisions the energy and the momen-
tum are also conserved:

m1v
2
1 +m2v

2
2 = m1v

′
1

2
+m2v

′
2

2
(3.1)

m1v1 +m2v2 = m1v
′
1 +m2v

′
2 (3.2)

Definition 1: velocity of center–of–mass

u :=
m1v1 +m2v2

m1 +m2

= const (3.3)

Definition 2: relative velocity

v := v1 − v2 (3.4)

Definition 3: reduced mass(†)

µ :=
m1m2

m1 +m2

(3.5)

3.1.1 Going to the Center–of–Mass reference frame

v1 − u =
m2

m1 +m2

v (3.6)

v2 − u = − m1

m1 +m2

v (3.7)

The force in this frame(‡) is

F12 = m1
d

dt
(v1 − u) =

m1m2

m1 +m2

v̇ = µv̇ (3.8)

F21 = m2
d

dt
(v2 − u) = − m1m2

m1 +m2

v̇ = −µv̇ (3.9)

and the equation of motion

µv̇ = F(r) (3.10)

where r = x1 − x2 and v = ṙ. The Coulomb force F is a central force

F(r) =
q1q2

4πε0

r

r3
(3.11)

(†) if m2 � m1 then µ ∼ m1
(‡) F12 = −F21
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From conservation of energy and momentum we know that

|v| = |v′|

and

|v1 − u| = |(v1 − u)′|
|v2 − u| = |(v2 − u)′|

b ’impact parameter’

b’ 
= b

v’

v

q μ

F(r)

r

x

y

θ

1

q2

Figure 3.1: Geometry of the Coulomb collision in the center–of–mass frame. As |v| = |v′| we know that b′ = b.
At t→ −∞ the particle m1, q1 has velocity (v) = v(e)x and impact parameter b.

i.e. velocities change direction but not absolute value. We also know that for a central force the
motion is in a plane and angular momentum is conserved. The problem is solved in the center–
of–mass frame (figure 3.1). Note that the process is entirely described by ϑ, v and the impact
parameter b. Using conservation laws in the relevant geometry (see lecture notes in Plasma I), we
find:

tan
θ

2
=
b90

b
with(§) b90 ≡ b90(v) =

q1q2

4πε0µv2
(3.12)

b90 is the impact parameter corresponding to a deflection by 90◦.(¶) In general the deflections will
be smaller with b > b90, but we expect they will also be more frequent.

3.1.2 From Center–of–Mass to laboratory frame

In different frames the deflection angles will be different (figure 3.2).

center of mass

Center of Mass Laboratory
v’−u

v

v’

v−u

u

θ θ θ L

x

y

≠

Figure 3.2: Deflection angle in center–of–mass frame (left) and in the frame of the laboratory (right). Note that
the angles of deflection are very different in the two frames.

(¶) for θ = π/2 = 90◦, tanπ/2 = 1 and b = b90
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After some trigonometry one finds for the deflection angle in the laboratory frame:

tan θL =
m2

m1+m2
v sin θ

u+ m2

m1+m2
v cos θ

. (3.13)

For small angles and v1 � v2 we have θL ' m2

m1+m2
θ(‖). Furthermore, if m2 � m1 – as in the case

of electrons colliding with ions – then θL ' θ.

3.2 Effect of multiple collisions

r

dΩ (solid angle)
dσ

θ

dθ

db

rdθ

r·sinθ

b

Figure 3.3: Concept of the differential cross–section

To account for the overall
effect of collisions we need
to look at different deflec-
tion angles and impact pa-
rameters.

3.2.1 Rutherford
differential cross–section

Particles with impact pa-
rameter in (b, b − db) are
scattered into angles (θ, θ+
dθ), corresponding to dΩ
(figure 3.3).

We have

dΩ =
2πr sin θ · r|dθ|

r2
= 2π sin θ|dθ| (3.14)

dσ = 2πb|db| (3.15)

Definition: Differential cross–section dσ/dΩ

ntargets

(
dσ

dΩ

)
dΩ ⇔ # of particles per unit path length which

are scattered into the solid angle dΩ

Alternatively, dσ/dΩ can be defined in terms of the number of particles dNsc scattered in dΩ per

unit time dt divided by the total flux of particles. The incoming flux Φin is Φin = ninv =
Nin

Avdt
v

thus for one electron (Nin = 1) we find

dNsc/dt

incoming flux
= Ntargets

(
dσ

dΩ

)
dΩ =⇒ dNsc

dt
=
Ntargets

Adt

(
dσ

dΩ

)
dΩ

Since the unit length dl is equal to vdt and the volume is V = Adl ≡ Avdt we obtain again

dNsc

dl
=
Ntargets

Avdt

(
dσ

dΩ

)
dΩ =

Ntargets

V

(
dσ

dΩ

)
dΩ = ntargets

(
dσ

dΩ

)
dΩ

(‖) This approximation is valid only if v1 � v2
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Using the relation between b and σ and the definitions of dσ, eq.(3.15), and dΩ, eq.(3.14), we find
(in the center–of–mass frame) the Rutherford cross–section:

dσ

dΩ
=

2πb|db|
2π sin θ|dθ|

=
b

sin θ

d

dθ
(b) =

b

sin θ

d

dθ

(
b90 cotg

θ

2

)
=

b2
90

4 sin4 θ
2

=
q2

1q
2
2

(4πε0)2µ2v4

1

4 sin4 θ
2

(3.16)

It describes the scattering of charged particles by Coulomb forces. To get the effective cross-section
for collisions giving deflections in a range θ ∈ (θ1, θ2), we need to integrate(∗∗)

∫ θ2

θ1

dσ

dΩ
dΩ(θ)

For example, for collisions giving θ ≥ 90◦:

σ(θ ≥ 90◦) =

∫ θ=π

θ=π/2

dσ

dΩ
dΩ(θ) =

b2
90

4

∫ π

π/2

2π sin θ dθ

sin4 θ
2

= πb2
90 (3.17)

Note that in this case the same result could have been found intuitively: from the definition of b90,
follows that the “target surface” σ for which θ ≥ 90◦ is πb2

90. The expression of the Rutherford
cross-section was used for the scattering of α–particles through metal foils:

• The dependence ∝ sin−4 θ
2

gave a proof of the nuclear model of atoms, and detailed mea-
surements gave estimates of the radius of the nucleons and of Z.

• Departure from ∝ sin−4 θ
2

at high energies indicated the presence of short range nuclear
forces.

Observations

1. dσ/dΩ ∝ v−4: as the number of collisions goes as v dσ/dΩ, collisional effects will scale as
T−3/2: the hotter the plasma, the less collisional.

2. For fixed v, dσ/dΩ increases for decreasing θ. For small θ: dσ/dΩ ∝ θ−4: small angle
collisions are much more frequent.

In the following we will consider, unless explicitly stated otherwise, only small angle collisions.

3.2.2 Integration over possible impact parameters and Coulomb logarithm

To consider the cumulative effect of many small angle collisions let’s analyse the energy transfer
rate as an example. This is the mechanism responsible for thermalisation. In this case we are
interested in how much energy is lost in each collision, and in summing over all possible collisions,
for example considering all possible impact parameters.
The energy lost by particle ’1’ in one collision is(††)

∆Ek ∼=
1

2
m1v

2 m1m2

(m1 +m2)2
θ2 (3.18)

(∗∗) the cross-section, derived here, corresponds to the effective cross-section for momentum transfer, which will
be defined in sec.(3.3).

(††) the derivation of ∆Ek is given in the appendix B.
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Considering that for small angles θ ' 2b90/b, this can be re–written as(‡‡)

∆Ek ∼=
1

2
m1v

2 m1m2

(m1 +m2)2

(2b90

b

)2

(3.19)

This is the energy lost in a single, small angle collision on a stationary target. Let’s calculate the
loss of energy per unit length for impact parameter interval db:

dEk
dl

∣∣∣∣
over db

= ∆Ek dσ n (3.20)

Remember that dσ n is the number of collisions per unit length with impact parameter b ∈
(b, b + db). The total loss of energy per unit length is obtained by integrating over all relevant
impact parameters

dEk
dl

∣∣∣∣
all b

=

∫ bmax

bmin

dEk
dl

∣∣∣∣
over db

=

∫ bmax

bmin

∆Ek n 2πb db =

=

∫ bmax

bmin

1

2
m1v

2 m1m2

(m1 +m2)2

(2b90

b

)2

n 2πb db =

= Ek n 8πb2
90

m1m2

(m1 +m2)2

∫ bmax

bmin

db

b

(3.21)

What are bmin and bmax? If we simply take bmin = 0, bmax =∞ we have a logarithmic divergence,
and not much physical meaning.

bmin: We are considering only small angles. For b < b90 the assumption of small angles would be
violated.

=⇒ bmin ' b90. (3.22)

Note that at very high Te, b90 becomes so small that quantum mechanical corrections must
be included. In such cases one can take bmin ' λ DeBroglie = h/mv.

bmax: Remember the Debye screening effect. Outside the Debye sphere, the potential is screened,
so the ‘collision’ does not ‘occur’

=⇒ bmax ' λD. (3.23)

Thus

dEk
dl

= Ek n 8πb2
90

m1m2

(m1 +m2)2
ln Λ, (3.24)

where ln Λ is the so called Coulomb logarithm and

Λ =
λD
b90

=

√
ε0Te/e2n

q1q2/4πε0µv2
. (3.25)

Note that because of the very weak logarithmic dependence, the exact choice of bmin, bmax is
irrelevant. Typically, for most plasmas treated in this course, one can take ln Λ ∼ 10–20.

(‡‡) if m1 � m2, then

∆Ek
Ek

' m1

m2

(2b90

b

)2

It will take a long time to loose all the initial energy.
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3.3 Effective collision frequencies for relaxation processes

We have to transform the loss per unit length to a loss per unit time.

3.3.1 Energy loss/transfer rate

dEk
dt

= v1
dEk
dl

= v
dEk
dl

, (3.26)

if we identify v1 with v (i.e. v2 = 0).

Definition: Effective collision frequency for energy loss

νEk :=
1

Ek

dEk
dt

(3.27)

Note that by ‘collision frequency’ we don’t simply mean the rate at which collisions take place,
but the rate at which collisions produce a certain effect (in this case the loss of energy).
From the definition of νEk :

νEk = v
1

Ek

dEk
dl

= 8πn
q2

1q
2
2

(4πε0)2

ln Λ

m1m2v3
, (3.28)

or with the general relation between collision frequency and cross–section

ν = nσv (3.29)

we have

σEk =
νEk
nv

=
q2

1q
2
2

2πε2
0

ln Λ

m1m2v4
. (3.30)

3.3.2 Momentum loss/transfer rate

Again, we consider only small angles(§§)

∆px = m1(v1 − v′1x) '
m2

m1 +m2

θ2

2
px, or

∆px
px
' m2

m1 +m2

θ2

2
. (3.31)

With eq.(3.18) we find

∆px
px

=
1

2

m1 +m2

m1

∆Ek
Ek

. (3.32)

If, for example, m1 � m2, then

∆px
px
' m2

2m1

∆Ek
Ek
� ∆Ek

Ek
. (3.33)

We can apply the same concepts of effective collision frequency and cross–section as discussed for
Ek:

σp = σEk
m1 +m2

2m1

=
1

2
σEk

(
1 +

m2

m1

)
= σEk ×


1
2
, m2 � m1

1, m2 = m1

� 1, m2 � m1

. (3.34)

The third case corresponds to electrons scattered by ions, for which the transfer of momentum
(and related change in the direction of the “pitch angle scattering”) is dominant over the transfer
of energy.

(§§) the formal derivation of ∆px is given in the appendix B.
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Chapter 4 Relaxation process and plasma resistivity

4.1 Summary of the velocity–dependent collision frequencies

In a plasma we have 4 kinds of collisions between charged particles:

Energy Momentum

e→ i ν
e/i
Ek

= ni
Z2e4

2πε2
0

ln Λ

mimev3
e

νe/ip = ν
e/i
Ek

mi

2me

(4.1a)

i→ e ν
i/e
Ek

= ne
Z2e4

2πε2
0

ln Λ

mimev3
i

νi/ep =
1

2
ν
i/e
Ek

(4.1b)

i→ i ν
i/i
Ek

= ni
Z4e4

2πε2
0

ln Λ

m2
i v

3
i

νi/ip = ν
i/i
Ek

(4.1c)

e→ e ν
e/e
Ek

= ne
e4

2πε2
0

ln Λ

m2
ev

3
e

νe/ep = ν
e/e
Ek

(4.1d)

where Z is the charge number of the ions. In principle ln Λe 6= ln Λi, but – due to the weak
logarithmic dependence – the difference can usually be neglected.

In summary, the general form of νEk for collisions of particles of the species j (projectiles) upon
particles of the species k (targets) is

ν
j/k
Ek
∼ nk

Z2
j Z

2
ke

4

2πε2
0

ln Λk

mjmkv3
j

(4.2)

and for most cases we can take ln Λk ≈ const.

4.2 Average collision frequencies

Until now we have considered the case of a particle with a given velocity v colliding with a fixed
target. We have averaged over the impact parameters and summed all the contributions from the
continuous distribution of scatterers.

In a plasma we usually deal with many particles of the same species with different velocities –
what we call a ‘population’. Of course, the full description of the dynamics of each particle is
impossible. Thus we might be interested in the average behaviour of this population in terms of
energy and momentum transfer, instead of considering the behaviour of single particles.

The common way to describe a population is through its distribution function f(x,v, t). For the
time being let’s forget the dependence of f upon the spatial and temporal coordinates, and retain
only the information on the distribution of velocities: f = f(v). To get information on the average
behaviour of a population, we need to average our previous results for the collision frequencies
over the velocity distribution.

‘Philosophical’ problem: we do not know yet what kind of distribution we can consider (e.g.
Maxwellian?), as we do not know yet the averaged value of collisional cross–sections. As we must
assume one form for the distribution in order to perform the average, we choose a Maxwellian;
then we will check whether in the plasmas of interest there is enough time for collisions to ther-
malise the particles and force their distributions to relax into Maxwellians.
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To get out of this logical trap one can look for experimental evidence (see appendix C) for methods
to measure distribution functions). It is found experimentally that fe,i(v) is in general well ap-
proximated by a Maxwellian even before collisions have the time to act on the particles, especially
in the case of electrons.(∗)

In the next sections we will derive the expressions for the average collision frequencies for exchange
of energy and momentum.

0 5 10 15 20
0

0.5

1

1.5

2

2.5
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5

t

A

tA

A0

Figure 4.1: Concept of ‘average collision frequency’ and
associated characteristic time: after τA the
change of A with respect to its initial value
A0 is of the order of the initial value A0.

A Maxwellian can be characterised by only
two parameters, its width and the shift.
Physically, these correspond to a tempera-
ture and a drift, and we will try to ex-
press our results in terms of these quanti-
ties.

The average rate of change for the generic
quantity A (energy or momentum) can be ex-
pressed as a frequency ν̄A or by a characteristic
time τA ≡ 1/ν̄A, with

ν̄A =
1

〈|A|〉

〈
d|A|
dt

〉
(4.3)

and the average 〈·〉 is performed over the dis-
tribution function f(v). Eq.(4.3) tells us that
if we start at t = 0 with a value A = A0, after
a time τA the change of A = A(t) will be of the
same order as A0 (figure 4.1).

4.3 Momentum loss of thermal plasma

4.3.1 e→ i

Ignore the ion thermal motion: vi � ve. The electrons are described by a Maxwellian distribution
shifted by a drift velocity vd

fe(ve) = ne

(
me

2π Te

)3/2

exp

{
−me(ve − vd)2

2Te

}
. (4.4)

The rate at which an electron of velocity ve loses momentum has been given in eq.(4.1a)

νe/ip (ve) = ni
Z2e4

4πε2
0

ln Λ

m2
ev

3
e

. (4.5)

The total loss of momentum per unit volume per unit time defines the average collision frequency

ν̄e/ip :=
1

|p|

〈∣∣∣∣dpdt
∣∣∣∣〉 , (4.6)

(∗) This is called the Langmuir paradox, and it is still unsolved. Turbulent electric fields are thought to be the
key–issue.
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with 〈
dp

dt

〉
=

1

ne

∫
fe(v)mev νp(v)︸ ︷︷ ︸

dp/dt

d3v, (4.7)

where νp ≡ ν
e/i
p and v ≡ ve have been introduced to simplify the notation. An intuitive guess is

ν̄e/ip ∼ νe/ip (vthe) (4.8)

where vthe =
√
Te/me. A more accurate calculation(†), assuming vd = vdx̂, vd � vthe and

ln Λ ' const, independent of v, yields

ν̄e/ip =
1

3

√
2

π
νe/ip (vthe) ' 0.26 νe/ip (vthe) (4.9)

v      = 0
d, ion

d, ion

v           = − v
d, electron d, ion

d, electronv v           = 0

x x

Figure 4.2: Galileian transformation of the collision e→ i (left) into i← e (right).

4.3.2 i→ e

As it is still the electron thermal motion which is dominating the relative motion, the result can
be obtained from the case e→ i by a simple Galileian transformation (figure 4.2). Since the total
momentum of the plasma is conserved, the momentum lost by the electrons must be equal to that
acquired by the ions, then the rate of momentum transfer is the same∣∣∣∣dpedt

∣∣∣∣ =

∣∣∣∣dpidt
∣∣∣∣ ⇒

∣∣peνe/ip

∣∣ =
∣∣piνi/ep ∣∣ ⇒ |pe| ν̄e/ip = |pi| ν̄i/ep

and

ν̄i/ep =
1

nimivd

∫
dvfe(v) pi,xν

i/e
p︸ ︷︷ ︸

pe,xν
e/i
p

=
1

nimivd

me

me

∫
dvfe(v)pe,xν

e/i
p

=
me

mi

1

nimevd

∫
dvfe(v)pe,xν

e/i
p︸ ︷︷ ︸

ν̄
e/i
p

ν̄i/ep =
me

mi

ν̄e/ip (4.10)

Note that ν̄
i/e
p � ν̄

e/i
p since me

mi
� 1. This makes sense, since for the light electrons it is much

more difficult to scatter (e.g. isotropize) the heavy ions.

(†) See exercise no.2, given on Thursday, 30th of September, 2010.
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4.3.3 i→ i

We can consider the same formalism as above, with one caveat: both classes of particles move,
and we need to consider two drifting Maxwellian distributions. Using the center–of–mass frame
one finds:

• The two ion masses are equal(‡) (same ion species)

ν̄i/ip '
1√
2

(
me

mi

)1/2(
Te
Ti

)3/2

Z2ν̄e/ip , (4.11)

• The ion species are different

ν̄i/i
′

p =
1

3

√
2

π
ni′
q2
i q

2
i′

4πε2
0

ln Λi′

m
1/2
i T

3/2
i

( mi′

mi +mi′

)1/2

, (4.12)

4.3.4 e→ e

Again, this is similar to i→ i and e→ i. The result is

ν̄e/ep ' 1√
2
ν̄e/ip . (4.13)

4.4 Summary of average collision frequencies

4.4.1 Momentum loss

ν̄e/ip =
1

3

√
2

π
νe/ip (vthe) =

1

3

√
2

π
ni
Z2e4

4πε2
0

ln Λ

m2
ev

3
the

=
1

3

√
2

π
ni
Z2e4 ln Λ

4πε2
0m

1/2
e

1

T
3/2
e

(4.14a)

ν̄e/ep ' 1√
2
ν̄e/ip (4.14b)

ν̄i/ep '
neme

nimi

ν̄e/ip (4.14c)

ν̄i/ip '
1√
2

√
me

mi

(
Te
Ti

)3/2

ν̄e/ip (4.14d)

4.4.2 Energy loss

Based on νEk ' 2m1

m1+m2
νp we find

ν̄
e/i
Ek

= 2
me

mi

ν̄e/ip (4.15a)

ν̄
i/e
Ek

= 2ν̄i/ep ' ν̄
e/i
Ek

(4.15b)

ν̄
i/i
Ek

= ν̄i/ip (4.15c)

ν̄
e/e
Ek

= ν̄e/ep (4.15d)

i.e. the same relations as for the not averaged collision frequencies.

Note: We only treated the cases e→ i and i→ e rigorously, as we assumed v2 = 0.

(‡) Hint: Eq.(4.11) is just ν̄
e/i
p /
√

2 calculated for parameters for ions instead of electrons
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4.5 Hierarchy of characteristic time scales

Let’s have a look at the hierarchy of characteristic time scales τ ≡ ν̄−1. The shortest time scale
corresponds to the largest ν̄, i.e. 1/ν̄

e/i
p . Note that

τ
i/i
p

τ
e/e
p

=

(
ν̄
i/i
p

ν̄
e/i
p

)−1

'
(
mi

me

)1/2(
Ti
Te

)3/2
1

Z2
.

We can identify three typical time–scales, as shown in figure 4.3:

a.) – electrons lose momentum on ions

– electrons lose momentum on other electrons

– electrons lose energy to other electrons(§)

b.) – ions lose momentum on other ions

– ions lose energy to other ions(¶)

c.) – electrons and ions reach the thermal equilibrium

dTe
dt

= −dTi
dt

= −ν̄e/iEk
(Te − Ti)→ 0 (4.16)

– ions lose momentum on electrons

Figure 4.3: Characteristic time scales τ = 1/ν. All these time scales can be expressed as a function of the fastest

one (τ
e/i
p ).

4.5.1 Quantitative estimates

We introduce the following definitions to simplify the notation:

νe ≡ ν̄e/ip ( ∼ ν̄e/ep ) ≡ electron collision frequency (4.17)

νi ≡ ν̄i/ip ( = ν̄
i/i
Ek

) ≡ ion collision frequency (4.18)

Thus

νe
νi
'
√
mi

me

for Te = Ti, Z = 1. (4.19)

(§) e/e has both types of ‘exchanges’: isotropisation and thermalisation
(¶) i/i has both types of ‘exchanges’: isotropisation and thermalisation
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For example, for a hydrogen plasma:

νe [s−1] ∼ 5 · 10−11 × n [m−3]

T
3/2
e [eV]

and νi[s
−1] ∼ 10−12 × n [m−3]

T
3/2
i [eV]

. (4.20)

Take Te = Ti = 10 keV; n ' 1020 m−3. The time–scales after which we can speak of electron and
ion ‘temperatures’ (i.e. the population is at the thermal equilibrium) are

νe ∼ 5 · 103 s−1 → τe ∼ 0.2 ms and νi ∼ 100 s−1 → τi ∼ 10 ms (4.21)

but τTi→Te ∼
mi

me

τe ∼ 1840 · 0.2 ms ' 0.4 s. (4.22)

~~

σ

σ 

σ
fusion

Coulomb

D−T

∼ 40 

[m  ]2

E [keV]

Figure 4.4: Fusion and Coulomb–scattering cross–sections

This means that on short time–
scales τ < τTi→Te we could
have reached the thermal equi-
librium between particles of the
same species at two different tem-
peratures Te and Ti. But this
does not necessarily imply that
the two populations are in ther-
mal equilibrium with each other,
i.e. Te = Ti = T . In
fact, in most laboratory and fu-
sion plasmas it is found that
Te 6= Ti. For example, remem-
ber the Lawson criterion(‖). For
the same values as above we have
τE ∼ 1 s. Over this time
we should have thermalised elec-
trons and ions (i.e. have well de-
fined Te, Ti) but not quite Te =
Ti.

Note that compared to ion and elec-
tron gyrofrequencies, νe and νi are
very small: the Larmor motion is
essentially unperturbed by collisions.
‘Larmor’ physics is still valid (e.g.
plasma diamagnetism).

Note also that for T ∼ 10 keV we have σ
α/α
Coul,Q � σfusion where α = e or α = i and Q is the

energy or the momentum (see figure 4.4), so the ions must be confined for many collision times
before they can give rise to fusion reactions. In general it does make sense to consider Maxwellian
distributions (in particular for evaluating the fusion reactivity).

(‖) This criterion gives the ignition condition in fusion devices. It can be written as follows: nτETi > 3 ×
1021 m−3 ·keV · s where n is the ion density, τE is the energy confinement time and Ti is the ion temperature,
refer to lecture 4 of Plasma Physics I or Chapter 9 in F.F. Chen’s textbook (vol.2).
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4.6 Plasma resistivity

Take a fully ionised plasma to which we apply an external electric field E. Electrons and ions will
be accelerated in opposite directions, but will also be subject to a friction force due to Coulomb
collisions. This friction force is responsible for the finite resistivity of the plasma. In order to
calculate it, we assume

• Only electrons carry currents(∗∗)

• Only e→ i collisions occur (ignore e→ e)

• Distribution of electrons remains Maxwellian with a drift vd

The momentum equation(††) along E (along B or with B = 0) is

me
dvde

dt
= −eE︸︷︷︸

acceleration

−m(vde − vdi)ν
e/i
p︸ ︷︷ ︸

deceleration

(4.23)

or, in its scalar form

me
dvd

dt
= −eE − mevd

τ
e/i
p (v)

(4.24)

Note that for electrons the directions of vd and E are opposite. To solve eq.(4.24) we need to

evaluate τ
e/i
p ; but for which velocity? Two cases can be distinguished:

1. vd � vthe

2. vd ≥ vthe

4.6.1 vd � vthe

In this case, the velocity that dominates corresponds to the electron thermal motion and does
not depend on vd, as calculated in 4.3.1. We have a steady–state solution ( d

dt
= 0) in which the

acceleration due to the electric field is balanced by the collisional drag exerted by the ions:

τ̄ e/ip eE = −mevd ⇒ vterminal
d = − τ̄

e/i
p eE

me

. (4.25)

As j = −enevd the previous equation can be recast as

τ̄ e/ip eE =
mej

ene
or j =

e2ne

me ν̄
e/i
p

E. (4.26)

With the definition of the resistivity η, j = η−1E, we find

η =
meν̄

e/i
p

e2ne
=

me

e2ne

1

3

√
2

π

(niZ)Ze4 ln Λ

4πε2
0m

1/2
e T

3/2
e

=

√
2

π3/2

m
1/2
e Ze2 ln Λ

12ε2
0T

3/2
e

. (4.27)

(∗∗) me � mi; for similar energies −→ |vi| � |ve|
(††) Note that we need to consider momentum exchange collisions, as we have to do with directed velocity.
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We observe that

• There is no dependence on the plasma density. In fact, the effect of density is to increase
both the number of carriers and the number of collisions, so the two effects balance out.

• η ∝ T
−3/2
e . For a metal, η ∝ Tαe , α > 0: very different!

• Our simple calculation over–estimates η by a factor of 2 because we did not account for the
acceleration of electrons by E: faster electrons are less subject to collisions and carry more
current.

• From more complete calculations:

η [Ωm] =
Ze2√me ln Λ

4πε203
√

2πT
3/2
e

= 5.1 · 10−5 × Z ln Λ

(Te[eV])3/2
“Spitzer resistivity”

(4.28)

This value agrees reasonably well with the experiments.

Examples:

1. Plasma at 100 eV: η ∼ 6 · 10−7 Ωm [∼ η of stainless steel]

2. Plasma at 1 keV: η ∼ 2 · 10−8 Ωm [∼ η of copper](‡‡)

3. For T � 1 keV plasma becomes almost superconducting

The decrease of the resistivity with the temperature has two consequences:

1. Magnetic flux is ‘frozen’ within plasma – a general property of supraconductors(§§)

2. Heating by current (‘ohmic heating’) becomes less and less effective at high Te. The increase
in energy per unit volume is

Power

Volume
= force× velocity × density = e|E| × vd × n = ηj2 ∝ T−3/2

e . (4.29)

Note that in the presence of B (with B‖E), we would have η‖ ≈ η and η⊥ > η: particles move
preferentially along the magnetic field lines, therefore the resistivity in this direction is smaller
than in the direction perpendicular to B.

(‡‡) e.g. solar flares: gigantic eruptions with I ∼ MA sustained by a small ∆V ≤ 1 Volt
(§§) e.g. solar wind carrying B–field with it.
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4.6.2 vd & vthe

If E is sufficiently high that the relative speed is not much smaller than the electron thermal
speed, τ̄

e/i
p cannot be considered independent of vd and we do not have necessarily a steady–state

solution. In this case we cannot take the value of ν
e/i
p averaged over a Maxwellian distribution,

but we need to retain the velocity dependent expression of ν
e/i
p (vd) and the time derivative d/dt.

Thus

me
dvd

dt
= −eE − νe/ip (vd)mevd. (4.30)

The key question is the sign of the term on the right hand side. For

e|E| > νe/ip mevd (4.31)

we have acceleration, otherwise deceleration. If we have acceleration, an increase in vd leads
to a decrease in ν

e/i
p . Then there is even more acceleration and so on. This is called the run-

away regime: electrons with sufficiently high velocity are more and more accelerated by E as the
collisional drag due to the friction force is insufficient to balance the acceleration given by the
electric field (figure 4.5).
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d
−2∼v

∼vd

vv v
d
terminal

th,eth,i
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qE

F  > qEc

F  < qEc

Figure 4.5: Sketch of the collisional drag Fc acting on electrons as a function of their velocity vd for E > ED.
The black arrows indicate the overall acceleration or deceleration.

By expressing ν
e/i
p in terms of vd, ν

e/i
p = ν

e/i
p (vd), see eq.4.5, we have

e|E| > (niZ)Ze4

4πε20

lnΛ

m2
ev

3
d

mevd

|E| > neZe
3 ln Λ

4πε2
0mev2

d

or
1

2
mev

2
d >

neZe
3 ln Λ

8πε2
0|E|

(4.32)

Let’s divide by Te:

1

2

mev
2
d

Te
>
ED
|E|

(4.33)
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Figure 4.6: Melting damage to the upper inner wall of JET, thought to be caused by run-away electrons.

where we have introduced the Dreicer electric field ED := neZe3 ln Λ
8πε20Te

. The meaning of this form is

that for |E| = ED the run-away regime is reached at Edrift = 1
2
mev

2
d = Te.

The production of run-away electrons is a serious problem in tokamaks. For typical parameters of
fusion plasmas the Dreicer field can be as low as 1 V/m. The probability of generating run-away
electrons is then quite high, and these electrons can reach energies of the order of a few MeV. If
their number is sufficiently high they give rise to ’electron beams’ that are no more confined inside
the plasma. In fact, they are thought to be responsible for damages to the vacuum vessel walls
and to other components installed inside the vessel (figure 4.6).

Once an electron exceeds the critical velocity, eq.(4.33), it is continuously accelerated and can reach
energies of several tens of MeV. Because of the toroidal acceleration, electrons emit synchrotron
radiation. A relativistic limit to the maximum energy an electron can reach is given by a balance
between the amount of power that is absorbed from the accelerating electric field and the amount
of power lost by electromagnetic radiation.
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So far we have studied the physics of collisions in uniform plasmas. The effect of collisions in non–
uniform plasmas is to provide transport of both particles and energy. The transport in velocity
space will be discussed later on in the course. Now we deal with transport in real space.

Chapter 5 Diffusion and transport

Let us review some general results of statistical mechanisms for a random walk in one dimension
(figure 5.1). A particle undergoing N statistically independent steps of size ξ = |ξi| will arrive at
position

x =
N∑
i=1

ξi (5.1)

ξ

i = 1  i = 2, 4 i = N = 5

i = 3

x
x f

(final position after N steps)

Figure 5.1: Random walk
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Figure 5.2: (a) Deviation from origin as a function of time for three random walks. The black line indicates the
average deviation as a function of time calculated for 1000 random walks.
(b) Squared deviation for the three random walks. The black line indicates the average square
deviation as a function of time calculated for 1000 random walks. Note that the diffusion coefficient
D is given by the slope of x2.

As each displacement is in a random direction the average displacement(∗)

x = 0. (5.2)

(∗) Here ‘average’ means: averaged over many random walks, not averaged over time for one random walk
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(figure 5.2a). However, the mean quadratic displacement (figure 5.2b)

x2 =
∑
i

ξ2
i +

∑
i

∑
j 6=i

ξiξj = Nξ2 +
∑
i

∑
j 6=i

ξiξj = Nξ2 6= 0, (5.3)

where we could set ξiξj = ξi ·ξj = 0 by virtue of the statistical independence of the ξi. Introducing
the inter–collision time τ and replacing

ξ2 ∼=
〈
v2
〉
τ 2 and N =

t

τ
(5.4)

we finally obtain

x2 ∼=
ξ2

τ
t =

〈
v2
〉
τ t ≡ Dt, (5.5)

where D is the diffusion coefficient. In general

D ∼= (step size)2 × frequency. (5.6)

where the step size is the distance particles travel in one direction in between and as a consequence
of a collision and the frequency corresponds to the inverse of the characteristic time between
collisions.

5.1 Transport of particles

5.1.1 Weakly ionised plasmas with B = 0

We consider here the case of a weakly ionised plasma, but the same formalism can be applied also
to strongly ionized plasmas.

For electrons we have

step size = λmfp =
1

nσ
=
vthe

νe/n
(5.7)

frequency = νe/n (5.8)

where νe/n = nneutralsσevthe is the frequency of electron/neutral collisions. The choice of the colli-
sion frequency depends on the degree of ionisation: in strongly ionised plasmas one should use νe
instead.

Thus

De
∼= λ2

mfpν
e/n =

v2
the

νe/n
, (5.9)

Di
∼=
v2

thi

νi/n
. (5.10)

Note that

De

Di

=
v2

the

v2
thi

νi/n

νe/n
∼ vthe

vthi

� 1 as
νe/n

νi/n
∼ vthe

vthi

(5.11)

because the atomic cross–section for elastic collisions is similar for electrons and ions. We see that
collisions reduce transport.
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In the following we want to answer the following questions:

1. Is diffusion really the important transport mechanism?

2. Can ions and electrons diffuse at (very) different rates in real plasmas?

To answer these questions we need a model. The equation of motion in non-magnetised plasmas
(B = 0) is sufficiently simple that we can use it and compare the result with the simple random
walk model.

m
dv

dt
= qE− ∇p

n
−mvνq/n︸ ︷︷ ︸
drag term

(5.12)

We are interested in small v relative to vthe and steady–state (d/dt = 0). Thus

v =
( q

mν

)
E−

( 1

mν

)∇p
n

(5.13)

The plasma pressure is defined as p = nT and if we assume an uniform temperature T , the pressure
gradient becomes

∇p = ∇(nT ) = T∇n (5.14)

and

v =
( q

mν

)
︸ ︷︷ ︸
µ ≡ |q|

mν

E−
( T

mν

)
︸ ︷︷ ︸
D ≡ T

mν

∇n
n
, (5.15)

where µ is called “mobility” and D = T/mν = v2
th/ν is the diffusion coefficient as defined before

in our heuristic model. The relation

µ

D
=
|q|
T

(5.16)

is called Einstein relation. Let’s calculate the particle flux for the species j:

Γj = njvj =
qj
|qj|

njµjE−Dj∇nj. (5.17)

If E = 0

Γj = −Dj∇nj “Fick’s law” (5.18)

saying that particles diffuse down along the density gradient. With the continuity equation

∂nj
∂t

+∇ · Γj = 0 (5.19)

assuming Dj = const, we get the diffusion equation(†)

∂nj
∂t

+∇ · (−Dj∇nj) =
∂nj
∂t
−Dj∇2nj = 0, (5.21)

(†) The diffusion equation is a consequence of the continuity equation. If there are sources and sinks, these will
appear in the right-hand side of the diffusion equation. For example consider an ionisation term S (source,
sign “+”) and a recombination term −αn2 (sink, sign “−”). Then the diffusion equation becomes

∂n

∂t
−D∇2n = S − αn2. (5.20)
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Remember our second question: can ions and electrons diffuse at different rates? The answer is
no; to maintain quasi–neutrality we need Γe ≈ Γi. As De 6= Di, this means that an electric field
must be created in the plasma. This field will try to slow down the electrons and accelerate the
ions. Assuming ne = ni = n, we have

Γi = µinE−Di∇n = Γe = −µenE−De∇n. (5.22)

Solving for E yields

E =
(Di −De

µi + µe

)∇n
n

“ambipolar field” (5.23)

n

r

∇n

E

Figure 5.3: Direction of ambipolar field

(figure 5.3). Note that if De = Di then E = 0 even for µe 6= µi. Now we can calculate the flux of
both species.

Γ = Γe = Γi = −
( µiDe + µeDi

µi + µe︸ ︷︷ ︸
Da

)
∇n. (5.24)

This is the form we found for the Fick’s law, with the ambipolar diffusion coefficient Da.
To estimate the order of magnitude we have (µe � µi)

Da ∼ Di +
µi
µe
De = Di +

Di

Ti

Te
De

De = Di +
Te
Ti
Di

Te=Ti= 2Di, (5.25)

where we have used the Einstein relation between µ, D and T . Thus we find that

Di < Da � De; (5.26)

the ambipolar field slows down electrons and increases ion diffusion (by a significant amount, in
this example a factor of 2).
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5.1.2 Plasmas with B 6= 0

Dynamics along B This case is of particular importance for fusion, as we try to confine plasmas
by magnetic fields. The dynamics along B will be very similar to the case B = 0, with one
difference: ambipolarity is more complicated as there is now a privileged direction in the plasma.
The quasi–neutrality condition is 3–D. Such condition will depend on the specific configuration.
For example, in a closed configuration the ambipolar field could be short–circuited by electron
motion along B, and/or across conducting end plates, if the configuration is linear.

Dynamics across B The equations of motion and continuity are much more complicated, but
we can use our general concepts of diffusion and the simple random walk model.

Observation:

Without collisions:
there would be no diffusion across B (over distances greater than ρL)

With collisions:
particles can jump across B (figure 5.4). After each collision the guiding center is displaced
by approximately ρL (this is our step size)(‡)

v v’

ρ
L

(g.c)

(g.c)’
x

.

neutral particle

Figure 5.4: Step size for perpendicular diffusion

Weakly ionised plasmas In this case the diffusion coefficient depends on the neutral density

D⊥e,i ∼ ρ2
Le,i ν

e,i/n, (5.27)

with D⊥i � D⊥e.

(‡) We need to have a gyro–motion that is not too perturbed by collisions, i.e. Ω� ν
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Strongly ionised plasmas Which collision frequency to use? To answer this question we state
first that only collisions between un–like particles give rise to a net diffusion and particle trans-
port. Like particles’ collisions only produce a ‘swapping’ of the guiding center positions. Stated
otherwise, for identical particles ∆v is equal and opposite due to conservation of momentum.
Thus(§)

D⊥e ' ρ2
Leν̄

e/i
p , (5.29)

D⊥i ' ρ2
L iν̄

i/e
p . (5.30)

Note that

D⊥e
D⊥i

' 1 (if Te ∼ Ti), (5.31)

i.e. that cross–field diffusion is automatically ambipolar. No need for E–field to maintain neutral-
ity.

5.2 Transport of energy

Let’s study now the transport of energy due to heat conduction, i.e. the flux of heat due to
temperature gradient. It follows the same diffusion equation as for particles (we will not prove it)

3

2

∂T

∂t
− χ∇2T = 0, (5.32)

where we assumed that the thermal diffusivity χ = const. The main difference is that for χ all
collisions contribute, including those between like–particles. Also, the relevant collision frequency
is νEk .

5.2.1 Across B

χ⊥e ' ρ2
Le

[
ν̄
e/i
Ek

+ ν̄
e/e
Ek

]
' 1√

2
ρ2
Leν̄

e/i
p , (5.33)

χ⊥i ' ρ2
Li

[
ν̄
i/e
Ek

+ ν̄
i/i
Ek

]
' ρ2

Liν̄
i/i
Ek

= ρ2
Liν̄

i/i
p , (5.34)

where ν̄
e/i
Ek
� ν̄

e/e
Ek

, ν̄
e/e
Ek
'
√

2 ν̄
e/i
p and ν̄

i/i
p = ν̄

i/i
Ek
� ν̄

i/e
Ek

was used. Assuming Te = Ti we get the
ratio

χ⊥e
χ⊥i
' ρ2

Le

ρ2
Li

√
2 ν̄

e/i
p

ν̄
i/i
p

'
√

2
me

mi

√
mi

me

=

√
2me

mi

� 1 (5.35)

=⇒ Ions ‘transport’ heat across B much more efficiently than electrons.

(§) In this “classical” diffusion picture (“minimum diffusion” state) the diffusion coefficients behave as

D⊥ ∝
1

B2
n. (5.28)
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5.2.2 Along B

χ‖e ' λ2
mfp

[
ν̄
e/i
Ek

+ ν̄
e/e
Ek

]
' v2

the[
ν̄
e/i
Ek

+ ν̄
e/e
Ek

] ' v2
the√

2 ν̄
e/i
p

, (5.36)

χ‖i '
v2

thi[
ν̄
i/i
Ek

+ ν̄
i/e
Ek

] ' v2
thi

ν̄
i/i
p

, (5.37)

the ratio is

χ‖e
χ‖i
' 1√

2

mi

me

√
me

mi

=

√
mi

2me

� 1 (5.38)

=⇒ Electrons ‘transport’ heat along B much more efficiently than ions.

5.2.3 Compare ‖ and ⊥ Transport

max(χ‖e, χ‖i)

max(χ⊥e, χ⊥i)
∼=
χ‖e
χ⊥i

=
v2

the√
2 ν̄

e/i
p

1

ρ2
Li
ν̄
i/i
p

=
(ρLe
ρLi

)2 Ω2
e√

2 ν̄
e/i
p ν̄

i/i
p

� 1, (5.39)

e.g. ∼ 1013 for JET tokamak plasma. In general

χ‖e � χ‖i≫ χ⊥i � χ⊥e, (5.40)

D‖a � D⊥i = D⊥e. (5.41)

Thus the different types of transport are dominated by

Parallel heat −→ electrons
Parallel particle −→ electrons (ambipolar E)
Perpendicular heat −→ ions
Perpendicular particle −→ neither

Note that

D‖ ∝
1

ν
, D⊥ ∝ ν. (5.42)

Thus parallel transport is slowed down by collisions whereas perpendicular transport needs colli-
sions.
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5.3 Qualitative survey on the limits of this “classical” model

Let us concentrate on ⊥ transport of particles (D⊥)

D⊥ ' ρ2
Le ν̄

e/i
p ∝

{
B−2

T−1/2 ; (5.43)

by increasing B (magnets) and by heating the plasma we should be able to make it as small as we
need it to be to achieve fusion! To find out whether this optimistic conclusion is valid in practice
we need an experimental verification. This means we need a way to measure directly the motion
of test–particles and verify that

1. It follows the diffusion equation

2. D is consistent with our “classical” theory

For the simplest plasma (a linear long column with magnetic field along its axis, and very qui-
escent), yes, diffusion can be classical and follow our (approximate) calculation (details on this
experimental verification are given in Appendix A).

But, how often is plasma behaving ‘classically’? Take the JET tokamak for example: R = 1 m;
τ = 0.5 s; B = 3 T; Te ' 10 keV; n = 1020 m−3. Experimentally one finds(¶)

Dexp
⊥ ' 1 m2/s. (5.44)

Compare it to classical prediction:

Dcl
⊥e ∼ ρ2

Leν̄
e/i
p ' (10−4)2 × 5 · 103 m2/s ' 5 · 10−5 m2/s, (5.45)

thus

Dexp
⊥ � Dcl

⊥e. (5.46)

This is probably the most critical physics problem for fusion. Is there something wrong in our
‘classical’ estimate for tokamaks? Is the Larmor radius really the step size to use? The answer is
no, we need to modify our estimate of diffusion due to Coulomb collisions somewhat, that leads
to “neo–classical” diffusion.

A tokamak is not a cylinder, but a torus with twisted field lines: particles follow more complicated
orbits than just gyro–orbits. It is the size of these orbits that needs to be considered for diffusion.
This size is 5÷ 10 times larger than the Larmor radius, so the resulting diffusion is 25÷ 100 times
larger, but still much smaller in most cases that measured experimentally.

(¶) Note that one cannot have a direct measure of D in fusion plasmas, but macroscopic analysis can give a

relation between D and measurable quantities: D ∼ a2

τE
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5.3.1 Qualitative explanation for ‘neo–classical’ diffusion

1. Particles move along helical B–field:

a
r

R

2. As B ∝ 1/R, particles experience along their motion minima (outside) and maxima (inside)
of B

3. Particles can be trapped in the effective magnetic mirror they see. The fraction of trapped
particles depends on the ratio a/R (aspect ratio), see figure (a) below.

|B| as seen by particle

ins
ide

ou
tsi

de

ins
ide

ou
tsi

de

toroidal direction

trapped particles

(a) (b)

4. Projected on the poloidal plane (i.e. a section of the torus), this trapped orbit has the shape
of a banana, so it is called the banana orbit, see figure (b) above.

Thus particles move quickly around the banana, then, when they collide, they jump to a different
banana orbit, so the width of this orbit is the size of the jump to be used for D⊥neo–cl.. Example
for JET:

Dneo–cl.
⊥ ∼ 60 Dcl.

⊥ � Dexp
⊥ . (5.47)

So the ‘neo–classical’ model is still far off the experimental behavior. This behavior is called
“anomalous” transport and is still not entirely understood, although it is unanimously attributed
to the effect of plasma turbulence, originating from unstable waves in the plasma.

Plasma Physics II Ambrogio FASOLI, CRPP/EPFL, 2010



6 Waves in plasmas page 39

Chapter 6 Waves in plasmas

All plasma particles are ”sources” for Maxwell’s equations. Therefore most dynamical processes
in plasmas are related to electromagnetic waves and oscillations. Waves are used to heat plasmas,
and to drive current non–inductively. Another example of the importance of waves is the role that
microscopic electromagnetic waves and instabilities play in producing transport of particles and
energy in plasmas well above the levels due to collisional effects.

6.1 Mathematical technique

a.) We will use normal mode (or plane wave) analysis. This corresponds to considering all
quantities in Fourier space, using the Fourier transform defined for any quantity g as

g̃(k, ω) =
1

(2π)4

∫
d3x

∫
dtg(x, t)e−i(k·x−ωt), (6.1)

with the inverse transform given by

g(x, t) =

∫
d3k

∫
dω g̃(k, ω)ei(k·x−ωt). (6.2)

This will lead to complex quantities. Naturally, all physical quantities are real, and we will
need to consider the real part at the end of all calculations.

The Fourier transformation is a linear operation. Its use comes from the fact that by using
it we can split a complicated problem into small pieces, solve it for these small pieces, and
combine the pieces together to form the complete solution. This implies that the system of
equations to be solved is linear.

b.) What we do is to linearise the systems of equations, considering small perturbations to an
existing equilibrium. Take for example the continuity equation (a differential equation) for
the mass density ρ and the fluid velocity u:

∂ρ

∂t
+∇ · (ρu) = 0, (6.3)

where ρ ≡ ρ(x, t) and u ≡ u(x, t).

1. Chose an equilibrium → no time dependence → steady state:

ρ0(x) = ρ0 (uniform equilibrium), u0(x) = 0 (static equilibrium) (6.4)

2. Consider small perturbations to this equilibrium

ρ = ρ0 + ρ1(x, t),
∣∣∣ρ1

ρ0

∣∣∣� 1 (expansion parameter) (6.5)

3. Linearise by retaining first order terms only to get the linearised continuity equation

∂(ρ0 + ρ1)

∂t
+ ∇ ·

(ρ0 + ρ1)( u0︸︷︷︸
=0

+u1)

 = 0

∂ρ0

∂t︸︷︷︸
Order 0; = 0 by definition

+
∂ρ1

∂t︸︷︷︸
Order 1

+ ∇ · (ρ0u1)︸ ︷︷ ︸
Order 1 and ρ0=cte

+ ∇ · (ρ1u1)︸ ︷︷ ︸
Order 2; neglected

= 0

∂ρ1

∂t
+ ρ0∇ · u1 = 0. (6.6)
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4. Now we consider normal modes, i.e. we consider the perturbed quantities as Fourier
transforms:

ρ1(x, t) =

∫
d3k

∫
dω ρ̃1(k, ω)ei(k·x−ωt) (6.7)

and the same for u1. Thus

∂

∂t

{∫
d3k

∫
dω ρ̃1(k, ω)ei(k·x−ωt)

}
+ ρ0∇ ·

{∫
d3k

∫
dω ũ1(k, ω)ei(k·x−ωt)

}
= 0

⇒
∫
d3k

∫
dω
[
−iωρ̃1(k, ω)

]
ei(k·x−ωt)

+ ρ0

∫
d3k

∫
dω
[
ik · ũ1(k, ω)

]
ei(k·x−ωt) = 0. (6.8)

Where we have used the following formal substitutions:

∇ → ik and
∂

∂t
→ −iω. (6.9)

So in our example the linearised continuity equation becomes in Fourier space an alge-
braic equation:

−iωρ̃1 + iρ0k · ũ1 = 0. (6.10)

In the following we will drop the tilde symbol to simplify the notation.
Note that it is important to refer to the equilibrium, in respect to which the linearisation was
done.

6.2 Phase and group velocities

6.2.1 Phase velocity

vph =
ω

k

k

k
. (6.11)

It can be |vph| > c, as vph does not carry information.

6.2.2 Group velocity

vg =
∂ω

∂k
. (6.12)

It cannot be |vg| > c, as vg does carry information. Proof in 1–D:

E1 = E0e
i(k+∆k)x−i(ω+∆ω)t, (6.13)

E2 = E0e
i(k−∆k)x−i(ω−∆ω)t. (6.14)

The modulated wave packet resulting from the superposition of E1 and E2 is

Etot = E1 + E2 = E0e
i(kx−ωt){ei(∆k x−∆ω t) + e−i(∆k x−∆ω t)

}
. (6.15)
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As eia + e−ia = 2 cos a we have

Etot = 2E0e
i(kx−ωt) cos(∆k x−∆ω t). (6.16)

The envelope of the wave, given by cos(∆k x−∆ω t), is what carries the information, and propa-
gates at the group velocity

vg =
∆ω

∆k
∼=
∂ω

∂k
. (6.17)

6.3 Reminder of the MHD plasma model

The first plasma model we consider to analyse plasma waves is the simplest, the Magneto-
hydrodynamics model (MHD). Let’s review very briefly its basis and some of its properties (already
covered in Plasma I). The system of equations for the MHD plasma model is:

∂ρ

∂t
+∇ · (ρu) = 0; ∇ · J = 0; (6.18)

ρ
du

dt
= J×B−∇p; E + u×B =

{
0 “ideal” MHD

ηJ “resistive” MHD
(6.19)

d

dt
(pρ−γ) = 0; ∇×B = µ0J; (6.20)

∇× E = −∂B

∂t
; ∇ ·B = 0; (6.21)

Here

d

dt
≡ ∂

∂t
+ u · ∇ (6.22)

is the convective derivative. Variables are ρ (mass density)(∗), u (fluid velocity), J, p, E, B.
We have 16 equations, of which 14 are independent, and 14 unknowns. The MHD approximation
describes phenomena that are

• Macroscopic (taking place on length-scales L� ρL)

• Relatively slow (with time-scales τ � Ω−1
ci , Ωci the ion-cyclotron frequency)

• But fast enough that u & vthi

Note that the charge density does not appear, as we consider quasi–neutrality, and that the electric
field in the Lorentz force and in the displacement current (in Ampère law) has been neglected.

6.3.1 Flux freezing and diffusion of B–fields through plasma

In hot plasmas the resistivity is so small that usually we can take η → 0. An important consequence
is that the magnetic flux is ‘frozen’ into the plasma. The field lines and the flux tubes associated
with them acquire an important physical meaning as if they were real objects. To estimate over
how much time the flux can be considered as frozen in the plasma, let us consider Ohm’s law with

(∗) the exponent γ in the equation of state is the adiabatic index, γ =
cp
cv

, where cv and cp = cv + R represent
the specific heat evaluated by keeping constant the volume or the pressure, respectively. For a mono-atomic
gas γ = 5/3, for polyatomic gases, γ = 5+f

3+f , where f denotes the number of internal degrees of freedom.
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η 6= 0 (resistive MHD)(†). We are interested in the typical time-scale associated with variations of
B in the plasma

∂B

∂t

Faraday
= −∇× E

Ohm
= −∇×

{
− u×B + ηJ

}
. (6.23)

Assume η ∼= constant and consider Ampère law J = 1
µ0
∇×B

∂B

∂t
= ∇× (u×B)− η

µ0

∇× (∇×B)

= ∇× (u×B)− η

µ0

(
∇(∇ ·B)−∇2B

)
= ∇× (u×B)︸ ︷︷ ︸

convection

+
η

µ0

∇2B︸ ︷︷ ︸
diffusion

. (6.24)

So B varies in a plasma because it is transported by it (convective term) or because it diffuses
through it (diffusion term). To estimate the relative importance of the two terms, consider the
scale length L ∼ |∇|−1. Thus

diffusion

convection
=

∣∣ η
µ0
∇2B

∣∣
|∇ × (u×B)|

∼
η
µ0

B
L2

uB
L

=
η

µ0uL
≡ R−1

m , (6.25)

where Rm = µ0uL/η is the magnetic Reynolds number(‡). In most plasmas of interest Rm � 1.

The characteristic time for the diffusion of B in plasmas is

τ =
( η

µ0L2

)−1

=
RmL

u
(6.27)

and in general is macroscopic, e.g. in the JET tokamak (L ∼= 1 m, Te = 10 keV, η = 5 × 10−5 ×
T
−3/2
e [eV] ln Λ ∼ 7.5× 10−10 Ωm)

τ ∼ 1700 s. (6.28)

In space plasmas this is even larger, due to the enormous values of L. An example demonstrating
the long time that it takes to decouple plasma and magnetic field comes from solar flares and solar
wind.

The solar wind is generated by a plasma that ‘erupts’ from the sun and is ejected out radially.
Each ‘blob’ of plasma forming the solar wind carries with it the magnetic field that it had in-
side the sun, practically unchanged until it reaches the earth magnetosphere. The interaction
with the magnetosphere and the earth magnetic field depends on the orientation of B in the so-
lar wind. This is difficult to predict, as the field inside the sun is turbulent and changes orientation.

(†) Note that this has been discussed in the Plasma I lecture (see relevant notes). It is summarized here for
completeness. One can also refer to the second problem of problemset #5.

(‡) in ordinary fluids, described by the Navier–Stokes equation, we define

R ≡ inertial force

viscous force
=
|ρu · ∇u|
|µ∇2u|

∼ ρuL

µ
, (6.26)

where µ is the viscosity.
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(a) (b)

(c)(d)

Figure 6.1: The stretch-twist-fold scheme for fast dynamo effect. Courtesy of A. Brandenburg, K. Subramanian,
Physics Reports 417 (2005) 1–209.

The freezing of B in a plasma is also believed to be at the origin of the magnetic field in the
universe and in the (melted) metallic core of planets such as the earth through ”dynamo effect”,
illustrated in figure 6.1.

The dynamo algorithm starts with first stretching a closed flux rope of cross–section S0 to twice
its length preserving its volume, as in an incompressible flow, see (a) → (b) in figure 6.1. The
rope’s cross-section then decreases by a factor of two (S1 = S0/2), and because of flux freezing the
magnetic field doubles (B1 = 2B0). In the next step, the rope is twisted into a figure eight, (b)
→ (c), and then folded, (c) → (d), so that now there are two loops, whose fields now point in the
same direction and together occupy the same volume as the original flux loop. The flux through
this volume has now doubled. The last important step consists of merging the two loops into one,
(d) → (a), through small diffusive effects. This is important in order that the new arrangement
doesn’t easily undo itself and the whole process becomes irreversible. The newly merged loops
now become topologically the same as the original single loop, but with the field strength scaled
up by a factor of 2.

It is believed that complex fluid motion can lead to effective stretching and folding of flux tubes,
therefore to amplification (or creation from thermal noise) of magnetic fields (”dynamo effect”).
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6.4 Ideal MHD waves

The ideal MHD can be reduced by combining its equations, obtaining

∂ρ

∂t
+∇ · (ρu) = 0 ρ

du

dt
= −∇p+

1

µ0

(∇×B)×B (6.29)

∂B

∂t
= ∇× (u×B)

d

dt
(pρ−γ) = 0(§) (6.30)

This is a system of 8 equations with 8 unknowns: ρ, p, u, B. We now consider small perturbations
to a uniform and static (no flow) equilibrium

B(x, t) = B0 + B1(x, t) u(x, t) = u1(x, t) (6.31)

ρ(x, t) = ρ0 + ρ1(x, t) p(x, t) = p0 + p1(x, t) (6.32)

and linearise the original system of equations in respect to the equilibrium

∂ρ1

∂t
+ ρ0∇ · u1 = 0 ρ0

∂u1

∂t
= −∇p1 +

1

µ0

(∇×B1)×B0 (6.33)

∂B1

∂t
= ∇× (u1 ×B0) p1 =

γp0

ρ0

ρ1 ≡ c2
sρ1

(¶) (6.34)

Here cs ≡
√
γp0/ρ0 is the sound speed . After elimination of p1 and Fourier transformation (refer

to section 6.1) this becomes

z

y

x

θ B
0

k

Figure 6.2: Notation for the study of
MHD waves.

−ωρ1 + ρ0k · u1 = 0 (6.35)

−ωρ0u1 = −kρ1c
2
s +

1

µ0

(k×B1)×B0 (6.36)

−ωB1 = k× (u1 ×B0) (6.37)

6.4.1 The shear Alfvén wave

Without loss of generality we can choose B0 = B0ẑ and
ky = 0 (see figure 6.5). Let us now consider the particular
case of a transverse wave u1x = u1z = 0, i.e.

k = (kx, 0, kz) (6.38)

u1 = (0, u1y, 0) (6.39)

We will treat the case u1x 6= 0 6= u1z later.

(§) Rewriting the continuity equation as
dρ

dt
= −ρ∇ · u, we have

dp

dt
+ γp∇ · u = 0.

(¶) From eq.(6.30) and eq.(6.32) we have (p0 + p1)(ρ0 + ρ1)−γ = p0ρ
−γ
0 ⇒ (p0 + p1)(1− γ ρ1

ρ0
) = p0. At the

’zero’ order (i.e. neglecting all the perturbation terms labelled as ′1′) we simply have p0 ≡ p0, while at the

first order we obtain p1 = γp0
ρ1

ρ0
.
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We have k ·u1 =

 kx
0
kz

 ·
 0

u1y

0

 = 0 and therefore from

Eq.(6.35), we find ρ1 = 0, i.e. there is no variation of the mass density and we can conclude that
the wave is of non–compressional type.

The component along the y-axis of eq.(6.36) becomes

ωρ0uy = − 1

µ0

[
(k×B1)×B0

]
y

=

= − 1

µ0

∣∣∣∣∣∣
x̂ ŷ ẑ

(k×B1)x (k×B1)y (k×B1)z
0 0 B0

∣∣∣∣∣∣
y

=

=
B0

µ0

(k×B1)x =
B0

µ0

∣∣∣∣∣∣
x̂ ŷ ẑ
kx 0 kz
B1x B1y B1z

∣∣∣∣∣∣
x

= −B0

µ0

kzB1y

Eq.(6.37) gives

−ωB1y =
[
k× (u1 ×B0)

]
y

=
[
k× x̂Bou1y

]
y

= B0kzu1y (6.40)

Then the system of eq.(6.35), eq.(6.36) and eq.(6.37) can be written as:

ρ1 = 0, (6.41)

ωρ0u1y +
kzB0

µ0

B1y = 0, (6.42)

kzB0u1y + ωB1y = 0, (6.43)

where eq.(6.42) and eq.(6.43) can be written as a homogenous linear system

A ·
(
u1y

B1y

)
= 0, where A =

(
ωρ0

kzB0

µ0

kzB0 ω

)
. (6.44)

To have a non–trivial solution (u1y 6= 0 6= B1y), we must have det A = 0. Thus, we obtain the
following dispersion relation

ω2 =
B2

0

ρ0µ0

k2
z ≡ c2

Ak
2
z = c2

Ak
2 cos2 θ, (6.45)

where cA ≡ B0/
√
µ0ρ0 is the Alfvén speed . Typical values are

Magnetosphere:

B ∼ 5× 10−8 T
n ∼ 106 m−3

}
⇒ cA ∼

5× 10−8

√
1.7× 10−27 · 106 · 4π · 10−7

∼ 106 m/s.

Tokamak:
B ∼ 3 T

n ∼ 1020 m−3

}
⇒ cA ∼

3√
1.7× 10−27 · 1020 · 4π · 10−7

∼ 6× 106 m/s.
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The solution given by eq.(6.45) is called shear Alfvén wave or non–compressional Alfvén wave, as
there is no density perturbation:

ρ1 =
k · u1

ω
= 0, (6.46)

This is different from sound waves, for example. Note that

• The velocity of α particles born with energies 3.5 MeV is > cA, so the α’s become resonant (‖)

with Alfvén waves during slowing down in a fusion reactor.

• Alfvén waves were observed in space first, then in mercury plasma (large ρ0 → smaller λ:
easier to measure in a bounded laboratory plasma).

• Alfvén waves are equivalent to waves on a string with tension S and mass per unit length
M

M
∂2y

∂t2
= S

∂2y

∂z2
=⇒ ω2 =

S

M
k2
z (6.47)

See problem #1 of problemset #5 where you can show the analogy between a wave travelling
along a magnetic field line and a chord.

6.4.2 The compressional Alfvén waves and the magneto–sonic waves

Now we consider the other case u1x 6= 0, u1y = 0, u1z 6= 0, where the perturbation has a longitudinal
component. Choosing B1y = 0 we get with our previous choices B0 = B0ez and ky = 0 from
eq.(6.37)

B1 =
u1xB0

ω
(k× ŷ). (6.48)

Inserting ρ1 from eq.(6.35) and B1 from eq.(6.48) in eq.(6.36) we get a linear system for u1x

and u1z, which again has only a non–trivial solution if the determinant of the coefficient matrix
vanishes. After some algebra one finds the dispersion relation

ω4 − ω2k2(c2
A + c2

s) + k2
zk

2c2
Ac

2
s = 0, (6.49)

which has the solutions

ω2 =
1

2

(
c2
A + c2

s

)
k2 ±

√
1

4

(
c2
A + c2

s

)2
k4 − c2

Ac
2
sk

2k2
z . (6.50)

Note that( cs
cA

)2

=
γp0

ρ0

µ0ρ0

B2
0

=
γ

2

p0

B2
0

2µ0

=
γ

2
β, (6.51)

The pressure ratio β is an important parameter to characterize a plasma(∗∗). For many plasmas
of interest we have β � 1, so cs � cA. In this limit the “+” branch of eq.(6.50) becomes

ω2 ' k2c2
A. (6.52)

(‖) As we will see later in the kinetic model, the condition vparticle ∼ vph makes it possible that a strong
interaction between waves and particles with exchange of energy may occur. This may lead to instabilities,
and the particle motion may be affected by the wave.

(∗∗) B2
0/2µ0 is often referred to as “magnetic pressure”.
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This solution is called fast wave or compressional Alfvén wave(††). For the “−” branch we find the
so–called slow wave or magneto–sonic wave

ω2 ' c2
sk

2
z = k2c2

s cos2 θ. (6.53)

A useful way to represent the solutions is the surface described by the vector of phase velocity
ωk/k2 (figure 6.3).
These are all possible modes of oscillation that an (unbounded) “MHD plasma” can sustain. As
we relax the assumptions that lead to the MHD model many other modes appear, for example
separating ions and electrons in their oscillatory motion. To describe these modes we need a more
detailed plasma model, such as the multi–fluid or the kinetic models.

θ

c  cosθ

B = B0z

A

c
A

θ c  cosθs

(b)(a)

^ B = B0ẑ

Figure 6.3: Alfvén waves
(a) non-compressional transverse shear Alfvén wave, dispersion relation eq.(6.45).
(b) outer circle: compressional fast Alfvén wave, dispersion relation eq.(6.52), inner curve: slow
magneto-sonic wave, dispersion relation eq.(6.53).

(††) ρ1 6= 0←→ ∇ · u1 6= 0
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6.5 General Description of Plasma Waves

We start from Maxwell equations, with the plasma, present through ρ and j as “source”, for the
fields

∇× E = −∂B

∂t
∇×B = µ0j +

1

c2

∂E

∂t
(6.54)

∇ · E =
ρ

ε0

∇ ·B = 0 (6.55)

and take the curl of the first equation to obtain the wave equation

∇× (∇× E) = −µ0
∂j

∂t
− 1

c2

∂2E

∂t2
(6.56)

We need to assume a constitutive relation between j and E totally general,

j(x, t) =

∫
dt′
∫

d3x′σ(t, t′,x,x′) · E(x′, t′) (6.57)

where σ is the conductivity tensor which contains the model for the plasma dynamics. Note
that in general this is a non–local relation. However, if the unperturbed system is uniform and
stationary, then, as a consequence of translation invariance,

σ(t, t′; x,x′) = σ(t− t′; x− x′) (6.58)

and we can use Fourier decomposition

jω,k = σω,k · Eω,k (6.59)

From the Fourier transform of eq.(6.56), i.e. for plane waves, we have

−k× (k× Eω,k) = iωµ0σ · Eω,k +
ω2

c2
Eω,k (6.60)

Multiplying by c2/ω2 we find(∗)

− c
2

ω2
k× (k× E) = i

c2µ0

ω
σ · E + E =

(
iσ

ε0ω
+ 1

)
· E ≡ ε · E (6.61)

where

1 =

1 0 0
0 1 0
0 0 1

 = δij (6.62)

is the identity dyad, ε0µ0 = 1/c2 and

ε ≡ iσ

ε0ω
+ 1 (6.63)

is the dielectric tensor . Finally the wave equation becomes{
N2

[
kk

k2
− 1

]
+ ε

}
· E = 0 (6.64)

(∗) Again the heavy notation has been dropped, e.g. Eω,k → E
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where the index of refraction

N2 ≡ k2c2

ω2
=

c2

v2
ph

(6.65)

has been defined and

k× (k× E) = k2

[
kk

k2
− 1

]
· E (6.66)

was given in dyadic notation.(†) Note that, as we are in Fourier space, all quantities are complex.
Eq.(6.64) only has a non–trivial solution E 6= 0 (i.e. a condition for waves to propagate) if

det

{
N2

[
kk

k2
− 1

]
+ ε

}
= 0 (6.68)

that leads to the dispersion relation

D(ω,k) = 0 (6.69)

which may be solved to obtain ω = ω(k) or k = k(ω). Frequency and wavelength are thus related
in a way that depends on plasma dynamics.

6.6 Dispersion Relations

6.6.1 Summary of Two–Fluid Model for B0 = 0, T 6= 0 [see in Plasmas I]

In the following we assume that the wave propagates along the z–direction. Note that the fluid
model is expected to break down for k2λ2

D > 1.

• Transverse waves (“T”): Ex, Ey 6= 0, Ez = 0

ω2 = ω2
pe + k2c2 (6.70)

• Longitudinal waves, (“L”): Ex, Ey = 0, Ez 6= 0

ω2 = ω2
pe + 3 k2v2

th,e “Langmuir waves” (6.71)

ω2 = k2c2
s (6.72)

ω2 ' ω2
pi “Ion acoustic waves” (6.73)

ω2 ' ω2
pi + k2v2

th,iγ (6.74)

Note that ion acoustic waves can propagate only in plasmas with Te � Ti, otherwise we have
resonant interaction and damping (as we will show in the study of wave-particle interactions using
the kinetic model). If Te & Ti waves with ω < ωpi do not propagate.

(†) The explicit expression for kk is

kk = [kikj ] =

 k2
x kxky kxkz

kykx k2
y kykz

kzkx kzky k2
z

 (6.67)
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k

ω
ω 3ω/k = c /k = csω/k = vthe

/ k = vthiω γ

ω

ωpi

pe

LT

L

1/λDe 1/λDi

Figure 6.4: Summary of the dispersion relations derived for an warm (T 6= 0) unmagnetised plasma (B0 = 0)
in the frame of the two–fluid model. γ is the adiabatic index. ´´T” stands for transverse, ´´L” for
longitudinal waves.

The solutions of the dispersion relation are shown in figure 6.4.

6.6.2 Two–Fluid Model for B0 6= 0, T = 0

We will now consider plasma waves and oscillations with B0 6= 0(‡) in the cold plasma model,
T = 0. We expect that B0, by introducing a “privileged” direction, will bring a much wider
variety of plasma modes of oscillation.

Langmuir waves and ion acoustic waves (for the case T 6= 0) are expected to be the same in
magnetised plasma if E1 ‖ B0, as in such geometry the Lorentz force will have no effect.

Let’s take a two–fluid model with T = 0, and therefore p = 0, with an equilibrium

uα0 = 0 B0 = B0ez (6.75)

where α = e, i denotes the plasma species and B0, nα0 ≡ n0 and ρ0 are uniform. The linearisation
of the equation of motion

mα

{
∂uα
∂t

+ (uα · ∇)uα

}
= qα {E + uα ×B} (6.76)

yields

mα
∂uα
∂t

= qαE1 + qαuα1 ×B0 (6.77)

(‡) Most plasmas of interest, also because of flux freezing, have B0 6= 0 somewhere
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and after Fourier transformation

−iωmαuα1 = qαE1 + qαuα1 ×B0. (6.78)

With

qαuα1 ×B0 = qαB0

∣∣∣∣∣∣
x̂ ŷ ẑ
uα1x uα1y uα1z

0 0 1

∣∣∣∣∣∣ = qαB0(uα1yx̂− uα1xŷ) (6.79)

Eq. (6.78) becomes −iω −Ωα 0
Ωα −iω 0
0 0 −iω

 · uα1 =
qα
mα

E1 (6.80)

and finally

uα1 =
qα
mα

 −iω −Ωα 0
Ωα −iω 0
0 0 −iω

−1

· E1 = µ
α
· E1 (6.81)

where we have introduced the mobility tensor µ
α
. Note that due to the uα×B0 term, µ

α
(hence

σ and ε) will not be diagonal. From Eq. (6.81), we find

µ
α

=
qα
mα

 −iω
Ω2
α−ω2

Ωα
Ω2
α−ω2 0

− Ωα
Ω2
α−ω2

−iω
Ω2
α−ω2 0

0 0 i
ω

 (6.82)

Note that, as mentioned before, the x and y–directions are coupled. As

j =
∑
α

qαnα0uα1 =
∑
α

qαnα0µα · E1 ≡ σ · E1 (6.83)

we get for the conductivity tensor

σ =
∑
α

qαnα0µα =
∑
α

q2
α

mα

nα0

 −iω
Ω2
α−ω2

Ωα
Ω2
α−ω2 0

− Ωα
Ω2
α−ω2

−iω
Ω2
α−ω2 0

0 0 i
ω

 . (6.84)

Finally we obtain from the definition Eq. (6.63) for the dielectric tensor

ε =

 ε1 −iε2 0
iε2 ε1 0
0 0 ε3

 (6.85)

where

ε1 = 1 +
∑
α

ω2
pα

Ω2
α − ω2

(§) (6.86)

ε2 = −
∑
α

Ωα

ω

ω2
pα

Ω2
α − ω2

(6.87)

ε3 = 1−
∑
α

ω2
pα

ω2
(6.88)
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z

y

x

kθ
B
0

Figure 6.5: Notation: Geometry of magnetic field and wave.

Note that, for a cold plasma, ε does not depend on k, but only on ω. For B→ 0 we have ε2 → 0
and ε1 → ε3, thus ε becomes a diagonal matrix with all elements equal to ε3. As we have expected,
there is no privileged direction anymore.
Let’s use these results to discuss the wave equation eq.(6.64) and its solutions given by eq.(6.68).
Choosing k in the yz–plane and defining the angle θ with respect to the z–axis as shown in figure
6.5, we find

N2

[
kk

k2
− 1

]
+ ε =

−N2 0 0
0 −N2 cos2 θ N2 sin θ cos θ
0 N2 sin θ cos θ −N2 sin2 θ

+

 ε1 −iε2 0
iε2 ε1 0
0 0 ε3


=

−N2 + ε1 −iε2 0
iε2 −N2 cos2 θ + ε1 N2 sin θ cos θ
0 N2 sin θ cos θ −N2 sin2 θ + ε3


and we impose the condition

det

−N2 + ε1 −iε2 0
iε2 −N2 cos2 θ + ε1 N2 sin θ cos θ
0 N2 sin θ cos θ −N2 sin2 θ + ε3

 = 0 (6.89)

to have a non–trivial solution for E1. This leads to a dispersion relation of the type

AN4 +BN2 + C = 0 (6.90)

where A,B and C depend on the angle θ between k and B0, but not on |k|, and on ω. Explicitly

(§) calculation: ε1 = 1 + i
ε0ω

∑
α
q2αnα0

mα

(
−iω

Ω2
α−ω2

)
= 1 +

∑
α

ω2
pα

Ω2
α−ω2
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A = ε1 sin2 θ + ε3 cos2 θ (6.91)

B = − (ε1 − ε2)2 sin2 θ + ε1ε3

(
1 + cos2 θ

)
(6.92)

C = ε3 (ε1 + ε2) (ε1 − ε2) (6.93)

Some important points are

• “cut–off” – where the wave is reflected

N = 0, C = 0 =⇒ ω

k
→∞ (k → 0, ω 6= 0) (6.94)

• “resonance” – where the wave is absorbed

N →∞, A→ 0 =⇒ ω

k
→ 0 (6.95)

6.6.3 Cut-offs

Introducing

εR ≡ ε1 + ε2 (6.96)

εL ≡ ε1 − ε2 (6.97)

we can write

C = εRεLε3 (6.98)

Note that C is independent of θ. In the cold plasma model, the cut–offs do not depend on the
propagation angle. In general there are three cut–offs

εR = 0 =⇒ ω = ωR (6.99)

εL = 0 =⇒ ω = ωL (6.100)

ε3 = 0 =⇒ ω2 ' ω2
pe (6.101)

where in the limit Ωe � Ωi,

ωR,L ∼=
1

2

{√
Ω2
e + 4ω2

pe ± Ωe

}
(6.102)

thus ωL ≤ ωpe ≤ ωR.

In the limit B→ 0 we find that ωR,L = ωpe, consistently with our previous model. A useful form
is

εR,L =
(ω ∓ ωR)(ω ± ωL)

(ω ∓ Ωe)(ω ± Ωi)
(6.103)
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6.6.4 Resonances

As the condition

A = A(ω, θ) = ε1 sin2 θ + ε3 cos2 θ = 0 (if ε1 6= 0) (6.104)

depends on the angle θ, for given values of ε1, ε3 (i.e. of plasma parameters and frequency), there
will be one angle for which the wave will encounter a resonance. Let’s consider the “principal”
directions θ = 0 and θ = π/2.

For θ = 0 (k ‖ B0), eq.(6.104) becomes

tan2 θ = −ε3
ε1

= 0 (6.105)

Thus there are resonances for

ε3 = 0 =⇒ ω2 = ω2
p

(¶) (6.106)

ε1 →∞ =⇒ ω2 = Ω2
e,i “cyclotron resonances” (6.107)

A useful expression for the index of refraction in parallel propagation is:

N2 =
k2c2

ω2
=

(ω ∓ ωR)(ω ± ωL)

(ω±Ωi)(ω ∓ Ωe)
' 1−

ω2
pe/ω

2

1∓ Ωe/ω

ω2
pe/ω

2

1∓ Ωe/ω
� 1

(¶) ωp seems to be both a cut–off and a resonance. In reality, as we have seen for T 6= 0 and B0 = 0, ωp is only
a cut–off.
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In the previous lecture, we have seen that the general expression of the dispersion relation is
AN4 + BN2 + C = 0. The cut-off frequencies are given by N → 0 ⇒ C = 0 and in the cold
plasma model, they don’t depend on the propagation angle θ. The resonance frequencies are given
by N →∞⇒ A = 0 and they depend on the propagation angle θ. Let’s consider the “principal”
directions, i.e. parallel and perpendicular propagation.

6.6.5 Propagation parallel to B0: θ = 0

In that case, the expression for the coefficient A, found in the previous lecture, becomes

A(ω, 0) = 0 → tan2 θ = 0 = −ε3
ε1

(6.108)

Thus there are resonances for

ε3 = 0 −→ ω2 = ω2
p

(∗) (6.109)

ε1 →∞ −→ ω2 = Ω2
e,i “cyclotron resonances” (6.110)

Let’s analyse the meaning of the cyclotron resonances by looking at the dispersion relation and
wave equation for waves propagating parallel to B0:−N2 + ε1 −iε2 0

iε2 −N2 + ε1 0
0 0 ε3

 · E1 = 0 (6.111)

One can note that ε3 = 0 gives the usual longitudinal (E = (0, 0, Ez)) dispersion relation ω = ωp,
as in the case B0 = 0, as Ezez ‖ B0 ‖ kzez. Let us now concentrate on transverse waves
(E = (Ex, Ey, 0)), dropping the subscript for E1{

(−N2 + ε1)Ex − iε2Ey = 0

iε2Ex + (−N2 + ε1)Ey = 0
(6.112)

therefore (−N2 + ε1)
2 − ε22 = 0 → −N2 + ε1 = ±ε2 and

N2 =

{
ε1 + ε2 = εR

ε1 − ε2 = εL
(6.113)

by introducing the “rotating vectors” ER,L ≡ Ex ∓ iEy we can separate the two components
and give a physical interpretation to the two solutions. As(

ER
EL

)
=

(
1 −i
1 +i

)(
Ex
Ey

)
and

(
Ex
Ey

)
=

(
1 −i
1 +i

)−1(
ER
EL

)
=

1

2

(
1 1
i −i

)(
ER
EL

)
the wave equation becomes

1

2

(
−N2 + ε1 −iε2

iε2 −N2 + ε1

)(
1 1
i −i

)(
ER
EL

)
=

(
−N2 + εR −N2 + εL

i (−N2 + εR) −i (−N2 + εL)

)(
ER
EL

)
= 0

(6.114)

(∗) ωp seems to be both a cut–off and a resonance. In reality, as we have seen for T 6= 0 and B0 = 0, ωp is only
a cut–off.
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x

z

y
ER

B0

θ = ωt

Figure 6.6: A wave field ER rotating with
the electrons.

and for

N2 = εR →

{
ER 6= 0

EL = 0
(6.115)

N2 = εL →

{
ER = 0

EL 6= 0
(6.116)

Right–handed wave (R)

N2 = εR ER 6= 0 EL = 0 → Ey = iEx

To understand whether the electric field of the wave
rotates with or against the direction of the cy-
clotron rotation of ions and electrons, let’s look at
the normal mode in real space on a plane (x, y)

Er = <


Er
iEr
0

 ei(k·x−ωt)


∣∣∣∣∣∣
x=0

= Er

cosωt
sinωt

0

 (6.117)

Thus, for ω > 0, the field rotates with the electrons.(†)

Left–handed wave (L)

N2 = εL EL 6= 0 ER = 0 → Ex = iEy

In this case the electric field rotates with the ions.

We expect (R) and (L) to resonate with electrons and ions, respectively:

N2 =
k2c2

ω2
=

(ω ∓ ωR)(ω ± ωL)

(ω∓ | Ωe |)(ω ± Ωi)
(6.118)

where the upper sign is for the R-wave, the lower for the L-wave. As expected, the resonances
(N2 →∞) are given by the denominator of eq.(6.118):

(R) ω →| Ωe | (L) ω → Ωi (6.119)

We find again the cut–off frequencies given by the numerator:

ω = ωR ω = ωL (6.120)

For these frequencies k → 0 but ω remains finite.

(†) Consider the diamagnetic nature of particle orbits, i.e. the magnetic field of a rotating particle will always try
to decrease the magnetic field which makes it rotate. This argument yields a positive rotation for electrons
and a negative for ions.
In general polarization can be defined as P = iExEy , where P > 0 means clockwise rotation and P < 0

counter-clock rotation. If |Ex| = |Ey| the polarization is circular, and P = ±1, where P = +1 is for the
R-wave and P = −1 is for the L-wave.
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If we let ω → 0 and k → 0 (the limit of “slow” and “large” processes described by MHD), both
branches behave in the same way

k2c2

ω2
' ωR ωL

Ωi | Ωe |
=

ω2
p

Ωi | Ωe |
=

e2 n

ε0me

1
e2B2

memi

=
mi n

ε0B2

ε0µ0=1/c2

=
c2µ0mi n

B2
=

c2

B2

ρµ0

=
c2

c2
A

−→ ω2 ' c2
Ak

2

As expected, we find the shear (incompressional) Alfvén waves, as found in the MHD model, in
the low frequency/long wavelength limit.

The phase velocities of R- and L-waves are different: if we send a wave propagating parallel to
B0 polarised in the perpendicular plane, its polarisation will rotate as it propagates through the
plasma (i.e. the plasma is a birefringent medium). This phenomenon is called Faraday rotation
(figure 6.7) and is used to get information on the B–field or the density inside the plasma. It is
useful in large astrophysical plasmas or when access to both ends of a magnetised plasma–column
is possible.

Figure 6.7: Faraday rotation of the plane of polarisation of an electromagnetic wave travelling along
B0.http://www.wikipedia.org.

Whistler waves

For the R-wave, in the limit ω/k � c (and ω � ωp <| Ωe |), if Ωi � ω �| Ωe |. ωR we have

k2c2

ω2
' 1−

ω2
p

(ω + Ωi)(ω− | Ωe |)
' 1 +

ω2
p

ω | Ωe |
'

ω2
p

ω | Ωe |
(6.121)

Thus

ω

k
' c

ωp

√
| Ωe | ω −→ w

k
∝
√
ω,

∂ω

∂k
∝
√
ω (6.122)
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The phase and group velocities increase with the frequency. Thus if we send a pulse made of
different frequencies in this range, along B0, the higher frequencies will propagate faster. “Whistler
waves” (‡) are a manifestation of this phenomenon, see figure 6.8.
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Figure 6.8: A lightning provides a broadband source of electromagnetic waves, high frequencies arrive faster,
followed by lower frequencies. This leads to a falling tone in the spectrum (see figure 6.9), hence the
name “whistler waves”. They were discovered during radio transmissions in world–war I, where they
were sometimes mistaken for bomb noise.
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Figure 6.9: Spectrograms (frequency vs. time plot) of whistler signals, as received at Palmer Station, Antarctica
on August 24, 2005 and showing the curvature caused by the low-frequency branch of the R-wave
dispersion relation. At each time t, the receiver rapidly scans the frequency range between 0 and 15
kHz, tracing a vertical line. Red (blue) color corresponds to signals of strong (weak) intensity at the
scanned frequency. The downward motion of the frequency with time then indicates a descending
glide tone. Source: http://www.wikipedia.org.

(‡) Note that the exact slope of whistlers and the time dependence of the pulse frequency contain information
on the Earth’ magnetosphere plasma through which they have propagated. This is why there are several
whistler recording instruments in polar regions (Antarctica).
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Summary of the Dispersion Relation for Propagation Parallel to B0, transverse waves

A summary of the dispersion relation for propagation parallel to the magnetic field is shown in
figure 6.10.

k

ω/k = cA

ω

/k = cω

no propagation for L-waves

no propagation for R-waves

R
L

R

L ion cyclotron waves

electron cyclotron waves

iΩ

Lω

Ω e

ω
R

shear Alfvén waves

region of whistlers (also called “helicon” waves)

Figure 6.10: Summary of dispersion relation for parallel propagation (k ‖ B0) and for the cold plasma model
T = 0.

6.6.6 Propagation perpendicular to B0: θ = π/2

In that case, the condition for non trivial solutions – see eq.(6.34) in the previous lecture – becomes

det

−N2 + ε1 −iε2 0
iε2 ε1 0
0 0 −N2 + ε3

 = 0 (6.123)

⇒ ε1(−N2 + ε1)(−N2 + ε3) + iε2(iε2)(−N2 + ε3) = 0

⇒ ε1N
4 + (−ε21 − ε1ε3 + ε22)N2 + ε21ε3 − ε22ε3 = 0

⇒ ε1N
4 + (ε22 − ε1ε3 − ε21)N2 + ε3 (ε1 + ε2)︸ ︷︷ ︸

εR

(ε1 − ε2)︸ ︷︷ ︸
εL

= 0

⇒ AN4 +BN2 + C = 0 (6.124)

We already found the cut–off points where N → 0 and which were independent of the angle of
propagation,

ω = ωp ω = ωR ω = ωL (6.125)
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Now we need to find the resonances, N →∞. As

N2 =
−B ±

√
B2 − 4AC

2A
(6.126)

N →∞ for A→ 0. Thus

ε1 = 1 +
∑
α

ω2
pα

Ω2
α − ω2

= 0 “Hybrid resonances” (6.127)

or explicitly

ω2 = ω2
LH = ΩeΩi

1 + me
mi

(
Ωe
ωp

)2

1 +
(

Ωe
ωp

)2 “Lower hybrid (LH) resonance”(§) (6.128)

ω2 = ω2
UH ' ω2

p + Ω2
e “Upper hybrid (UH) resonance” (6.129)

We note that the lower hybrid resonance is given by a combination of ion and electron Larmor
motion, whereas the upper hybrid resonance is given by a combination of space–charge and electron
Larmor motion. The qualitative mechanism for the latter is given in figure 6.11.

Figure 6.11: Upper hybrid (UH) oscillation. Elec-
trons form regions of compression
and rarefaction (space–charge oscilla-
tions). With B0 6= 0 perpendicular to
the motion, the Lorentz force consti-
tutes an additional restoring force be-
sides the space–charge induced elec-
tric field. The natural response fre-
quency will be higher than in the
B0 = 0 case.

B0

electron orbits

lines of constant density

Wave Equation and Dispersion Relation for θ = π/2

Looking at the coefficient matrix eq.(6.123) we remark that the third component is decoupled
again. Thus Ez 6= 0, Ex = Ey = 0 is a solution if N2 = ε3, leading to the dispersion relation

E ‖ B→ ω2 = ω2
p + k2c2 “Ordinary mode” (OM). (6.130)

As expected, this is the same as for B0 = 0. Ex, Ey 6= 0, Ez = 0 is a solution if (−N2+ε1)ε1−ε22 = 0.

E ⊥ B→ N2 =
(ω2 − ω2

R)(ω2 − ω2
L)

(ω2 − ω2
UH)(ω2 − ω2

LH)
“Extraordinary mode” (XM). (6.131)

(§) Lower hybrid waves are used in magnetic fusion devices to generate plasma current (localised where the
wave absorption occurs) without using the ohmic transformer (“Lower Hybrid Current Drive”, abbreviated
by “LHCD”).
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where the cut–offs and resonances are as calculated above. Note that the distinction between
OM and XM (¶)is only possible for perpendicular propagation. For θ 6= π/2, OM and XM are
coupled together. As for θ = 0, we can take the limit ω → 0 and k → 0. We find ω2/k2 → c2

A,
corresponding to compressional Alfvén waves already found in the MHD model.

Summary of the Dispersion Relations

The dispersion relations shown in figure 6.1 of the previous lecture and in figure 6.12 below
summarise the characteristics of the waves that can propagate in a uniform, infinitely extended,
magnetised “cold” plasma.(‖)

k

ω /k = c A

ω

/k = cω

LHω

Lω

ω
R

lower hybrid

no propagation for XM & OM

no propagation for XM

upper hybrid

OM
XM

XM

compressional Alfvén waves

ωp

ωUH

XM

Figure 6.12: Summary of the dispersion relation for B0 6= 0, T = 0, k ⊥ B0 (θ = π/2)

6.7 Some Comments on the Use of Wave Dispersion Relations

We will address the following issues:

• How to use the dispersion relation D(ω,k) = 0, ω(k), k(ω) to calculate E–fields?

• How good is the model used for actual plasma experiments?

– in a bounded geometry

(¶) As k = key, we can have k ‖ E, i.e. “electrostatic” waves, as

∂B1

∂t
= −∇×E −→ B1 =

k×E

ω
= 0 (6.132)

(‖) Examples of different kinds of waves recorded in the earth ionosphere and magneto-
sphere, as well as from other planets, can be found in the form of audio files at
http://www.science.nasa.gov/ssl/pad/sppb/edu/lionroar/.
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– with an inhomogeneous plasma (to assess the accessibility of waves)

In general, one has

det( · ) = 0 =⇒ D(ω,k) = 0 =⇒ ω(k) or k(ω) (6.133)

i.e. a wave exists only if ω = ω(k). There are two ways to proceed, corresponding to two classes
of problems.

6.7.1 Initial Condition Problem

We fix E(x, t = 0). After applying the dispersion relation we have

E(x, t) =

∫
R3

d3k

∫
C

dωE0(k, ω) ei(k·x−ωt)δ
(
ω − ω(k)

)
=

∫
R3

d3k E0(k) ei(k·x−ω(k)t)︸ ︷︷ ︸
normal modes

(6.134)

where E0(k) is to be determined. Note that k ∈ R3 and ω ∈ C. This approach is usually applied to
calculate instability growth rates using the imaginary part of ω, =ω ≡ Im(ω). Taking eq.(6.134)
at t = 0 and applying the inverse Fourier transformation yields

E0(k) =
1

(2π)3

∫
R3

d3xE(x, 0) e−ik·x (6.135)

Note that in general D(ω,k) = 0 can have more than one solution ωj(k), j = 1, 2, . . . , N . If this is
the case we need more information than just E(x, 0) to calculate the Fourier coefficients E0j(k):

E(x, t) =
N∑
j=1

∫
R3

d3kE0j(k) ei
(
k·x−ωj(k)t

)
(6.136)

or for t = 0:

E(x, 0) =

∫
R3

d3k

{
N∑
j=1

E0j(k)

}
eik·x (6.137)

We also need

∂E

∂t

∣∣∣∣
t=0

=

∫
R3

d3k

{
−i

N∑
j=1

ωj(k) E0j(k)

}
eik·x (6.138)

In general we need as many derivatives (at time t = 0)

∂j−1E

∂tj−1

∣∣∣∣
t=0

=

∫
R3

d3k

N∑
j=1

[
− iωj(k)

]j
E0j(k) eik·x j = 1, . . . , N (6.139)

as we have roots for the dispersion relation to have a full linear system to determine all the E0j(k).
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6.7.2 Boundary Value Problem

Fix E(x = 0, t). Then

E(x, t) =

∫
R

dωE0(ω) ei
(
k(ω)·x−ωt

)
(6.140)

with k ∈ C3, ω ∈ R. This implies

E(0, t) =

∫
R

dωE0(ω) e−iωt (6.141)

or

E0(ω) =
1

(2π)

∫
R

dωE(0, t) eiωt (6.142)

For several roots kj(ω) we have analogously to eq.(6.136)

E(x, t) =
N∑
j=1

∫
R

dωE0j(ω) ei
(
kj(ω)·x−ωt

)
(6.143)

and we need

∂`E

∂x`

∣∣∣∣
x=0

=

∫
R

dω

{
N∑
j=1

E0j(ω)
[
ikj(ω)

]`}
e−iωt , ` = 1, . . . , N (6.144)

to determine the E0j(ω).

This is the scenario used for example to heat the plasma via electromagnetic waves: an antenna
is installed at the plasma edge and is fed with a given (obviously real) frequency ω.

6.8 Waves in Inhomogeneous Plasmas

6.8.1 Possible Extensions of the Model

So far we have considered uniform (unperturbed) plasmas. In general the main plasma parameters,
such as the density n0, temperature Te, magnetic field B0, pressure p0 etc. have gradients along
at least one direction. Two consequences for wave propagation are:

1. One needs to check the “accessibility”: the wave should be able to reach a resonance before
a cut–off.

2. The solution k(ω) will now depend on the spatial position x: the plane wave formalism has
a problem. One approximation around this problem is the WKB method: Assuming that
k is only a slowly varying function of space (i.e. the variations occur over scales that are
much longer than the wavelength), we can write

E exp

{
i

∫ x

0

k(x′) · dx′ − iωt

}
(6.145)

instead of exp
{

i(k ·x−ωt)
}

along the direction of propagation of the wave (“ray tracing”).
The method can be applied if the scale of variation is much larger than the wavelength.
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6.8.2 Drift Waves

This last part has not been treated during the lecture.

In non-uniform plasmas, in addition to modifying the local dispersion relation (as accounted for in
the WKB approximation), new waves are introduced, i.e. new modes of oscillation in the plasma.
To illustrate this, we consider a simplified case, in which we assume

1. A plasma slab, with variations only along x.

2. Low frequency, electrostatic waves E1 = −∇φ, B1 = 0, B0 = B0ez.

3. Incompressible fluid ∇ · v = 0.

4. Long wavelengths λ� λD. Thus ne = ni at all orders (no deviation from neutrality).

5. Te uniform, Ti = 0; variations only in n0(x).

6. Adiabatic electrons, i.e. moving fast enough to equilibrate with potential according to Boltz-
mann statistics(∗∗)

ne = n0 exp

{
eφ

Te

}
(6.146)

or at first order

ni1 = ne1 = n0
eφ

Te
(6.147)

We start from the ion continuity equation

∂ni
∂t

+∇ · (nivi) = 0 (6.148)

we linearise it using vi0 = 0 and ∇ · vi1 = 0

∂ni1
∂t

+ vi1 · ∇n0 =
∂ni1
∂t

+ vi1x
dn0

dx
= 0 (6.149)

and do a Fourier transformation t→ ω. Thus(††)

−iωni1 + vi1x
dn0

dx
= 0 (6.150)

or with eq.(6.147)

−iωeφ = −vi1xTe
1

n0

dn0

dx
≡ −vi1xTe

1

Ln
(6.151)

where Ln is the characteristic length for the density gradient. In order to obtain an expression for
vi1x we start from the equation of motion for ions (Z = 1)

mi
dvi
dt

= e(E + vi ×B0) = e(E + vi ×B0) (6.152)

(∗∗) This corresponds to saying me → 0.
(††) Note that we cannot do a Fourier transformation x→ kx, as the medium is inhomogeneous in this direction.
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where we have neglected Ti. Linearisation and Fourier transformation yields

−iωmivi1 = e(E1 + vi1 ×B0) (6.153)

Considering ω � Ωi we can neglect the left hand side and find(‡‡), for the y-component of the
previous equation

vi1x =
E1y

B0

=
−ikyφ

B0

(6.155)

Using this in eq.(6.151) we finally get the dispersion relation

ω = − Te
eB0

1

Ln
ky (6.156)

We see that the phase velocity is

vph =
ω

ky
= − Te

eB0

1

Ln
≡ vd (6.157)

where vd is the diamagnetic drift velocity,

Ln =
n
∂n
∂x

is the density gradient scale length, and we have assumed uniform Te.

Drift waves are important as they can appear in all plasmas with a pressure gradient, and can
always be destabilised by the free energy associated with such a gradient. Different mechanisms
for the instability can occur, including finite resistivity or effects related to the presence of different
velocity classes of particles (“kinetic effects”). This is why drift instabilities are sometimes called
universal instabilities .

Drift waves and instabilities are thought to be responsible for anomalous (i.e. larger than col-
lisional) transport in magnetised plasmas. This is why they are a very important subject of
theoretical and experimental investigations.

Note on the main limitations of a fluid model: The main limitation in the treatment of
waves in plasmas using a fluid model is that it does not account for different responses of different
plasma particles (with different velocities) to various plasma waves.

Questions

• Will we have other characteristic plasma oscillations and waves due to the single particle
nature of the plasma, namely for short λ’s and high frequency ω & Ωi?

• How will the exchange of energy between particles and waves take place (aside from slow
collisional processes)?

These questions will be addressed in the next part of the course, focused on the kinetic model.

(‡‡) Another way to see this approximation is to neglect all other drift velocities against

vE×B =
E×B

B2
(6.154)
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Note: The lecture has started with a short review of the previous lectures: Definition and creation
of a plasma, collisions and transport, waves.

Chapter 7 The kinetic model and the Vlasov equation

7.1 Origin of the Vlasov Equation

Particles are described by means of their distribution function f(x,v, t), with
∫
V
f(x,v, t) d3x d3v =

NV (NV being the total number of particles inside V ), such that

f(x,v, t) d3x d3v (7.1)

represents(∗) the number of particles that at the time t occupy the hypervolume (in the phase space)
of size d3x d3v centred at x, v. The volume d3x d3v is macroscopically small but microscopically
large.

• Macroscopically small : the quantities that characterise f(x,v, t) and determine its evolution
are representative of the point x, v in the phase space, and not of the entire volume.

• Microscopically large: there are enough particles inside the volume d3x d3v to allow a sta-
tistical description.

We define the position in the phase space of the particle j by the independent variables xj, vj,
with

ẋj = vj (7.2)

v̇j =
Fj

mj

or ṗj = Fj (7.3)

We will consider only the non-relativistic case.

The force on the particle j can be split into two contributions, Fj = Fext
j + Fint

j :

• The macroscopic part Fext
j (external to the volume d3x d3v) is the same for all particles in

the volume.

• The microscopic part Fint
j is due to collisions between particles inside d3x d3v and may be

different for different particles.

• We will assume that

|Fint
j | � |Fext

j | (7.4)

so we don’t need to follow every particle j, but we can treat the particles in the phase space
volume d3x d3v statistically(†). The kinetic theory will therefore apply to plasmas in which
collisions are relatively unimportant(‡) – as is the case for hot plasmas.

(∗) Note that this interpretation depends on the normalisation we have chosen for f . If f was normalised so
that

∫
Vtot

f(x,v, t) d3xd3v = 1, instead of
∫
Vtot

f(x,v, t) d3x d3v = NVtot
, the distribution function would

have the meaning of probability to find a particle inside the volume d3xd3v.
(†) It is basically a transition to a continuum description.
(‡) Note that this is indeed the regime we are interested in: in a strongly collisional plasma, distributions become

Maxwellians very quickly and fluid theory provides a very good model.
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The assumption (7.4) allows us to neglect the correlations between particles(§). In this approxi-
mation, Liouville’s theorem applies and phase space density is conserved in phase space, i.e. the
continuity equation is valid on phase space.

Let’s apply the conservation of the number of particles:

NV =

∫
V

f(x,v, t) d3x d3v (7.6)

through their evolution in phase space (Lagrangian approach). Introducing the phase space “ve-
locity”

U ≡ (ẋ, v̇) =
(
v,

F

m

)
(7.7)

we have

dNV

dt
= 0︸ ︷︷ ︸

Liouville

=

∫
V

∂f

∂t
d3x d3v +

∫
S(V )

fU · d5S︸ ︷︷ ︸
net flux in phase space into volume V

(7.8)

Using the divergence theorem (in the 6–dimensional phase space) we obtain

dNV

dt
= 0 =

∫
V

{
∂f

∂t
+∇ps · (fU)

}
d3x d3v ∀V (7.9)

where the phase space differential operator is defined as

∇ps ≡ (∇x,∇v) ≡
( ∂

∂x
,
∂

∂v

)
(7.10)

As V is an arbitrary phase space volume

∂f

∂t
+

∂

∂x
· (fv) +

∂

∂v
·
(
f

F

m

)
= 0 (7.11)

or

∂f

∂t
+ v · ∂f

∂x
+

F

m
· ∂f
∂v

+ f
{ ∂

∂x
· v +

∂

∂v
· F

m

}
︸ ︷︷ ︸

= 0

= 0 (7.12)

Here F = Fext (first crucial passage to get the Vlasov equation).

In the last equation
∂

∂x
·v = 0, as x and v are independent phase space coordinates, and

∂

∂v
·F/m =

0, as the electromagnetic fields are independent of v and the Lorentz force is perpendicular to v

(§) Remember that

Ek

Ep
=

T

e2n1/3
∼ N2/3

D � 1, (7.5)

as for an ideal gas.
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(second crucial passage).(¶) Thus, for each species α,

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(E + v ×B) · ∂fα
∂v

= 0 “Vlasov equation” (7.13)

Indeed Fext is the force due to the macroscopic fields E and B created either by external sources
or by plasma particles, via

ρ(x, t) =
∑
α=e,i

qα

∫
fα(x,v, t) d3v (7.14)

j(x, t) =
∑
α=e,i

qα

∫
v fα(x,v, t) d3v (7.15)

7.2 Collision Terms

Collision terms can be added to the right hand side of the Vlasov equation(‖), such as

• Krook term:(
∂f

∂t

)
c

= −νp(f − fMaxwell) (7.16)

where we consider that, under the effects of collisions, f relaxes towards a Maxwellian
distribution at a rate given by νp (momentum transfer).

• Fokker–Planck term:
Including the theory of Coulomb collisions properly one finds(

∂f

∂t

)
c

= − ∂

∂v

(
d 〈∆v〉

dt
f

)
︸ ︷︷ ︸

v–space convection
(‘drag’)

+
1

2

∂2

∂v∂v
:

(
d 〈∆v∆v〉

dt
f

)
︸ ︷︷ ︸

v–space diffusion

(7.17)

where ∆v is a variation in v due to a collision, 〈∆v〉 is the average over possible v–increments
and

d 〈∆v∆v〉
dt

(7.18)

are the v–space diffusion coefficients due to Coulomb collisions.

(¶) Explicitly

∇v ·
F

m
=

q

m

∂

∂v

{
E(x, t) + v ×B(x, t)

}
=

q

m

∂

∂vi

{
εijk vj Bk(x, t)

}
=

q

m
εijk δij Bk(x, t) =

q

m
εiik Bk(x, t) = 0

Even more general: remember that q ≡ x and p ≡ mv are canonical variables. Thus

∇x · (mv) +∇v · F =
∂

∂q
· q̇ +

∂

∂p
· ṗ =

∂

∂q
·
(∂H
∂p

)
+

∂

∂p
·
(
− ∂H

∂q

)
= 0

(‖) The collisional Vlasov equation is often referred to as Boltzmann equation.
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7.3 Properties of the Phase Space Evolution of f

1. Incompressible ∇x · v = 0,

2. f conserved along ‘characteristics’ or ‘particle orbits’,

df

dt
=
∂f

∂t
+
∂f

∂x
· dx

dt
+
∂f

∂v
· dv

dt
= 0 (7.19)

3. If Cj are constants of motion (dCj/dt = 0), then f ≡ f(C1, C2, . . . , CN) is a solution of the
Vlasov equation as

df

dt
=

∂f

∂C1

dC1

dt
+

∂f

∂C2

dC2

dt
+ . . .+

∂f

∂CN

dCN
dt

= 0 (7.20)

Note that in the full system with self–consistent fields it is virtually impossible to find the
constants of motion. However, it is possible to find them in the unperturbed equilibrium
(no self–consistent fields).

Example 1: no external fields, plasma in equilibrium:

v · ∂f
∂x

= 0. (7.21)

v is a constant of motion and any f ≡ f(v) is a solution of Vlasov equation.

Example 2: B = B0 = B0ez, stationary equilibrium:

v · ∂f
∂x

+
q

m
(v ×B0) · ∂f

∂v
= 0. (7.22)

vz, v
2, x+ vy/Ω, y − vx/Ω are constants of motion and any

f ≡ f(vz, v
2, x+

vy
Ω
, y − vx

Ω
)

is a solution.

4. Total energy and momentum in particles and fields are conserved (details follow in the lecture
of next week),

5. Entropy is conserved (cf. exercise 1 of problemset 8),

6. • Vlasov (no collisions): evolution is time–reversible

• Boltzmann (collisions): evolution is irreversible, f tends to a Maxwellian
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7.4 Conserved quantities

In a collisionless plasma, i.e. a plasma in which the interaction within the same microscopic phase
space volume d3xd3v can be neglected with respect to those outside the volume

(
|Fint

j | � |Fext
j |
)
,

from the Liouville theorem one finds the Vlasov equation eq.(7.13), describing the evolution of
fα(x,v, t) for the species α:

∂fα
∂t

+ v · ∂fα
∂x

+ a · ∂fα
∂v

= 0

where a = qα
mα

(E + v ×B), or the equivalent form:

∂fα
∂t

+
∂

∂x
· (vfα) +

∂

∂v
· (afα) = 0

The Vlasov equation conserves:

• Total energy (see below):

Etot = Eparticles + Efields =
∑
α

mα

2

∫
v2fα d3x d3v +

1

2

∫ (
ε0E

2 +
B2

µ0

)
d3x (7.23)

• Total momentum:

Ptot = Pparticles + Pfields =
∑
α

mα

∫
v fα d3x d3v + ε0

∫
(E×B) d3x (7.24)

• Entropy(∗) (see exercise 1 of problemset 8):

dS

dt
= 0, S = −

∫∫
f ln f d3x d3v (7.25)

Meaning that the evolution is reversible. Of course, if we introduce collisions, f → fMaxwell

and we loose reversibility.

7.4.1 Conservation of energy

This part has not been treated in the lecture but in exercise 1 of problemset 9.

There are two contributions to the total energy: one – Ep – from the particles and the other – Ef

– from the fields:

Ep(t) =
∑
α

∫
d3x

∫
d3v

1

2
mαv

2fα(x,v, t) (7.26)

Ef (t) =

∫
d3x

(
1

2
ε0E

2 +
1

2µ0

B2

)
(7.27)

For the particles:

dEp

dt
=

∑
α

∫
d3x

∫
d3v

1

2
mαv

2∂fα
∂t

= −
∑
α

∫
d3x

∫
d3v

1

2
mαv

2

[
∂

∂x
· (vfα) +

∂

∂v
· (afα)

]
(7.28)

= −
∑
α

∫
d3v

1

2
mαv

2

∫
d3x

∂

∂x
· (vfα)︸ ︷︷ ︸

(A)

−
∑
α

∫
d3x

∫
d3v

1

2
mα v

2 ∂

∂v
· (afα)︸ ︷︷ ︸

(B)

(∗) As usual, we have put kB = 1 and f is normalised first.
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further, using the Gauss theorem, the term (A) in eq.(7.29) becomes∫
V

d3x
∂

∂x
· (vfα) =

∫
S

vf · dσ = 0

and this integral is zero because f rapidly tends to zero when |v| → ∞.

∂

∂v
· (v2afα) = v2 ∂

∂v
· (afα) + afα ·

∂

∂v

(
v2
)

= v2 ∂

∂v
· (afα) + afα · 2v (7.29)

where we have used

∂

∂v

(
v2
)

=


∂

∂vx
∂

∂vy
∂

∂vz


(
v2
x v2

y v2
z

)
=

 2vx
2vy
2vz

 = 2v (7.30)

Using these equations to rewrite the term (B) in eq.(7.29), we get

dEp

dt
= −

∑
α

∫
d3x

∫
d3v

1

2
mα

∂

∂v
· (v2afα)︸ ︷︷ ︸

=0 from Gauss theorem

−qα(E + v ×B)fα · v

 =

= +
∑
α

∫
d3x

∫
d3v fαqα v · E =

∫
d3x

∫
d3v

∑
α

qα fαv︸ ︷︷ ︸
j

·E =

∫
d3x j · E

For the fields, eq.(7.27):

dEf

dt
= ε0

∫
d3xE · ∂E

∂t
+

1

µ0

∫
d3xB · ∂B

∂t
∂E

∂t
= c2∇×B− c2µ0j =

1

ε0µ0

∫
d3xB · ∂B

∂t
∂B

∂t
= −∇× E

(7.31)

dEf

dt
= ε0

∫
d3xE ·

[
1

ε0µ0
∇×B− 1

ε0
j
]

+ 1
µ0

∫
d3xB · (−∇× E) =

−
∫

d3x j · E + 1
µ0

∫
d3xE · (∇×B)− 1

µ0

∫
d3xB · (∇× E)

Using the vector identity

∇ · (E×B) = B · (∇× E)− E · (∇×B)

we can write:∫
d3x

[
E · (∇×B)−B · (∇×E)

]
= −

∫
d3x∇ · (E×B) =

∫
S

(E×B) · dσ = 0 (7.32)

as for x→∞ the fields must go to zero, to keep energy finite.

Finally we have:

dEtot

dt
=

dEp

dt
+

dEf

dt
= 0 total energy is conserved

dEf

dt
= −dEp

dt
= −

∫
d3x j · E the work done by the electric field E

Plasma Physics II Ambrogio FASOLI, CRPP/EPFL, 2010



7.5 Moments of the distribution function page 72

7.5 Moments of the distribution function

From the distribution function we define

• the density in the configuration space:

nα(x, t) =

∫
fα(x,v, t) d3v (7.33)

• the total number of particles (of species α):

Nα,tot(t) =

∫∫
fα(x,v, t) d3x d3v =

∫
nα(x, t) d3x

• the average “fluid” velocity:

〈
vα

〉
(x, t) = uα(x, t) =

∫
fα(x,v, t) v d3v∫
fα(x,v, t) d3v

(7.34)

These are just examples of “moments” of f . Let’s see the general case:

If g(v) is a polynomial function of the components of v, its average value for the species α
described by the distribution function fα is

〈
gα(v)

〉
=

∫
fα(x,v, t) g(v) d3v∫
fα(x,v, t) d3v

=
1

nα(x, t)

∫
fα(x,v, t) g(v) d3v

The integral(†)

const.

∫
fα(x,v, t) g(v) d3v (7.35)

is called a moment of fα, of order N , where N is the highest order of the polynomials defining the
function g(v).

The moments of fα of different order represent the physical quantities averaged over v, i.e. char-
acteristic of the whole species α. They correspond to quantities describing the plasma as a fluid
(the distinction into velocity classes has been lost by integrating).

(†) ∫
fα(x,v, t) g(v) d3v∫
fα(x,v, t) d3v

if the quantity is normalised.
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Important moments of f (with physical interpretation) are:

• 0th order moment of fα: g(v) = 1, i.e. the density:

nα(x, t) =

∫
fα(x,v, t) d3v

• 1st order moment of fα: g(v) = v, i.e. the average fluid velocity of the species α:

uα(x, t) =

∫
fα v d3v∫
fα d3v

=
1

nα(x, t)

∫
fα v d3v

• 2nd order moment of fα, for example the energy density:

ρE,α =
1

2
mα

∫
v2fα(x,v, t) d3v =

1

2
mαnα|uα|2︸ ︷︷ ︸

macroscopic
kinetic energy

+
1

2
mα

∫
(v − uα)2fα(x,v, t) d3v︸ ︷︷ ︸

microscopic
thermal energy

where v2 = (v − u + u) · (v − u + u).

Using the equipartition principle(‡), we can define the temperature (each particle has 3
degrees of freedom) as

1

2
mα

∫
(v − uα)2fα(x,v, t) d3v ≡ 3

2
nαTα (7.36)

In general, other moments of order two can be defined, for ex. tensor terms like

mα

∫
vvfα(x,v, t) d3v (7.37)

of which the microscopic part is the pressure tensor

Pα(x, t) = mα

∫
fα(x,v, t)(v − uα)(v − uα) d3v

i.e.

(Pij)α (x, t) = mα

∫
fα(x,v, t)

[
(v − uα)i(v − uα)j

]
d3v

If the distribution function fα is symmetric around uα
(§), then the off-diagonal elements are

zero, the pressure becomes a scalar and there is a clear correspondence between the whole

(‡) At equilibrium, each degree of freedom gets 1
2kBTα of thermal energy. Note that in our notation kB = 1.

(§) A simple and common example of this is

{
fα isotropic

uα = 0
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pressure tensor and the temperature Pα ↔ Tα
(¶). Proof for the isotropic case (and uα = 0

for simplicity):

(Pxy)α =

∫
d3v mαvxvy fα(v) = 0 (7.38)

as vx and vy are odd functions and we find the same result for all cross-terms:

(Pxy)α = (Pyx)α = (Pxz)α = (Pzx)α = (Pyz)α = (Pzy)α = 0 (7.39)

We remain with the diagonal terms

(Pxx)α = (Pyy)α = (Pzz)α︸ ︷︷ ︸
identical due to symmetry

=

∫
d3v mαv

2
xfα(v) =

=
mα

3

∫
d3 vfα(v)

(
v2
x + v2

y + v2
z

)
=
mα

3

∫
d3 vfα(v)v2 =

=
2

3

[
1

2
mα

∫
d3 vfα(v)v2

]
=

2

3

[
3

2
nαTα

]
= nαTα = pα

In tensor notation(‖):

Pα(x, t) = mα

∫
fα(x,v, t) vv d3v = mα

∫
fα(x,v, t)

v2

3
1 d3v =(

1

3
mα

∫
fα(x,v, t)v2 d3v

)
1 = nαTα1 = pα1 � (7.40)

• 3rd order moment: for ex. g(v) = 1
2
mαv

2v, from which we obtain the heat flux

Sα ≡
1

2
mα

∫
v2vfα(x,v, t) d3v

This also includes both macroscopic (ordered) and microscopic (disordered, thermal) con-
tributions.

7.6 From the Vlasov equation to the fluid equations

If we multiply the Vlasov equation by g(v) and integrate over velocity, from the definition of the
moments we can derive the fluid equations.∫

d3v g(v)

[
∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v

]
= 0

(¶) If fα is not symmetric around uα, such correspondence exists only for the diagonal terms.
(‖)

vv =

 v2
x vxvy . . .
. . . v2

y . . .
. . . . . . v2

z

 =
1

3

 v2 . . . . . .
. . . v2 . . .
. . . . . . v2


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• 0th order moment: g(v) = 1

∂

∂t

∫
d3v f︸ ︷︷ ︸
n

+
∂

∂x
·
∫

d3v vf︸ ︷︷ ︸
nu

+

∫
d3v

∂

∂v
·
[ q
m

(E + v ×B) f
]

︸ ︷︷ ︸∫
S

[ q
m

(E + v ×B)f
]
· dσ = 0(∗∗)

So, we find the continuity equation:

∂n

∂t
+

∂

∂x
· (nu) = 0 (7.41)

• 1st order moment: g(v) = mv

∫
d3v mv

∂f

∂t
+

∫
d3v mv

(
v · ∂f

∂x

)
+

∫
d3v mv

(
F

m
· ∂f
∂v

)
= 0

where F = q(E + v ×B)

⇒ m
∂

∂t
(nu)︸ ︷︷ ︸

(1)

+
∂

∂x
·m
∫
dv vv f︸ ︷︷ ︸

(2)

+

∫
dv v · ∂(Ff)

∂v︸ ︷︷ ︸
(3)

= 0

Let’s evaluate the three contributions separately:

(1) = mu
∂n

∂t
+mn

∂u

∂t

eq.(7.41)
= mn

∂u

∂t
+mu

(
− ∂

∂x
· (nu)

)
(2) =

∂

∂x
·m
∫

d3v (v − u + u)(v − u + u)f

=
∂

∂x
·
∫

d3v m(v − u)(v − u)f +m
∂

∂x
·
∫

d3v (v − u)uf︸ ︷︷ ︸
=0 as

∫
vfd3v=u

+ m
∂

∂x
·
∫

d3v u(v − u)f︸ ︷︷ ︸
=0 as

∫
vfd3v=u

+m
∂

∂x
·
∫

d3 v uuf

=
∂

∂x
·P +m

∂

∂x
·
[
(nu)u

]
=

∂

∂x
·P +mnu · ∂u

∂x
+mu

∂

∂x
· (nu)

(3) =

∫
d3v

∂

∂v
· (vFf)︸ ︷︷ ︸

=0 using Gauss theorem

−
∫

d3vFf · ∂v

∂v︸︷︷︸
1

= −
∫

d3vFf = −F(u)n = −nq(E + u×B)

Finally:

mn
∂u

∂t
−mu

∂

∂x
· (nu) +

∂

∂x
·P +mnu · ∂u

∂x
+mu

∂

∂x
· (nu) = nq(E + u×B) (7.42)

(∗∗) The surface integral S is computed on the boundary of the phase space. Supposing that f → 0 quickly when
when v and x→∞, the integral vanishes.
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or

mn

(
∂

∂t
+ u · ∇

)
u = mn

du

dt
= −∇ ·P + nq(E + u×B) (7.43)

We have found the fluid equation of motion, without collisional dissipation.

We are now ready to look at plasma oscillations and waves in plasmas described by the Vlasov
model (hot plasmas) and at the fundamental problem of wave-particle interaction.

Plasma Physics II Ambrogio FASOLI, CRPP/EPFL, 2010



7.7 Electrostatic Approximation (B1 = 0) page 77

7.7 Electrostatic Approximation (B1 = 0)

Electrostatic approximation (electrostatic waves): the magnetic field of the wave is 0. As the term
N2(kk

k2 − 1) · E in the wave equation derives from k × (k × E), then from ∇ × (∇ × E), that is
from ∇× (−∂B

∂t
), we see that

N2

(
kk

k2
− 1

)
· E ' 0 (7.44)

in the electrostatic (e.s.) approximation. The e.s. dispersion relation associated with the wave
equation

ε · E = 0 is then det ε = 0 (7.45)

where ε = 1− σ/iωε0

Note:

• As a B–field is needed to support waves in vacuum, e.s. waves can only exist in the medium
(in our case, in the plasma). For example we cannot excite e.s. waves with antennas unless
they are immersed in the plasma.

• As

∇× E = −∂B

∂t
⇐⇒ k× E = −ωB = 0 =⇒ k ‖ E (7.46)

for e.s. waves.

• In many cases the dependence of ε on k is weak: as{
N2

[
kk

k2
− 1

]
+ ε

}
· E = 0, (7.47)

for k →∞ (i.e. small wavelengths), N →∞, and the only way to satisfy the wave eq.(7.47)
is to have the term

[
kk
k2 − 1

]
· E ' 0. For k → ∞, ω/k becomes small: e.s. waves are

generally characterised by relatively small phase velocities (or large N = kc/ω).

• The reason why we concentrate on e.s. waves in discussing waves in the kinetic model is
because a wave with very large phase velocity (an “electromagnetic wave”) will not interact
strongly with particles as there will not be many with v ∼ ω/k, see figure 7.1a. Due to the
weak wave–particle interaction we do not need a kinetic model of plasma/waves. The wave
is so much faster than particles that the plasma can be considered as a fluid. However, if
ω/k → vparticles, we expect a strong interaction (figure 7.1.b). To describe this situation we
need the kinetic model, accounting for particles with different velocities.
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f(v)

f(v)

a.)

b.)

ω/k

v

v

There are particles with v ≅ ω/k

ω/k

Figure 7.1: a.) Weak and b.) strong wave–particle interaction.

7.8 Vlasov–Maxwell Description of an Unmagnetised Plasma (B0 = 0)

The equations of the Vlasov–Maxwell system are

∇ · E =
ρ

ε0

+
ρext

ε0

∇ ·B = 0

∇× E = −∂B

∂t
∇×B = µ0j +

1

c2

∂E

∂t

but we only need Poisson’s equation for e.s. waves and

ρ =
∑
α

qα

∫
fα d3v j =

∑
α

qα

∫
vfα d

3v

as well as 
∇ · E =

ρ

ε0

+
ρext
ε0

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(E + v ×B) · ∂fα
∂v

= 0

To solve for the unknowns E (or φ) and f , we do the usual approach

1. Equilibrium: E0 = 0; B0 = 0; fα0 ≡ fα0(v); ρext,0 = 0

2. Perturbation: fα1(x,v, t) = fα1(v)ei(k·x−ωt); B1 = 0 (e.s. waves)

3. Fourier: ∂
∂t
→ −iω; ∂

∂x
→ ik
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Linearisation:
∂fα1

∂t
+ v · ∂fα1

∂x
+

qα
mα

E1 ·
∂fα0

∂v
= 0

∇ · E1 =
1

ε0

∑
α

qα

∫
fα1 d3v +

ρext

ε0

(7.48)

and we do not need further equations.

Fourier: 
−i(ω − k · v)fα1 +

qα
mα

E1 ·
∂fα0

∂v
= 0

ik · E1 =
1

ε0

∑
α

qα

∫
fα1 d3v +

ρext

ε0

(7.49)

Use e.s. potential: E1 = −∇φ, i.e. in Fourier space E1 = −ikφ in the first equation of eq.(7.49),
solve for

fα1 = −φ qα
mα

k · ∂fα0

∂v

ω − k · v
(7.50)

and inject it in the second equation of eq.(7.49):

k2φ = − 1

ε0

∑
α

q2
αφ

mα

∫
k · ∂fα0

∂v

ω − k · v
d3v +

ρext

ε0

(7.51)

Note that there is a resonance for ω = k · v, i.e. vpart = ω/k = vph. Rewrite eq.(7.51) as

1 +
∑
α

q2
α

ε0mα

1

k2

∫
k · ∂fα0

∂v

ω − k · v
d3v︸ ︷︷ ︸

=: D(ω,k)

=
ρext

ε0φk2
(7.52)

where D(ω,k) is the dispersion function. Note that

• If ρext = 0 we have the dispersion relation for e.s. waves:

D(ω,k) = det ε(ω,k) = 0 (7.53)

• If ρext 6= 0:

φ(ω,k) =
1

ε0k2

ρext(ω,k)

D(ω,k)
(7.54)

By perturbing the plasma with ρext(ω,k), we can have a large response only if we approach
the zeros of D(ω,k), i.e. the roots of the dispersion relation. These are the plasma intrinsic
modes of oscillation.

From such a dispersion relation we hope to calculate which waves can exist and which exchange
energy with particles.
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Choosing a geometry with k = kez (no loss of generality) and defining u ≡ vz we get for the case
ρext = 0

0 = ε = 1 +
∑
α

q2
α

mαε0k2

∫
k ∂fα0

∂u

ω − ku
dvx dvy du (7.55)

or defining Fα0 ≡
∫∫

fα0 dvx dvy,

1 +
∑
α

q2
α

mαε0k

∫
R

dFα0

du

ω − ku
du︸ ︷︷ ︸

Landau integral

= 0 (7.56)

Landau observed that this is an ill–posed problem. fα1 does not evolve as a plane wave: we
cannot take fα1 ∝ exp{i(k · x−ωt)}. The problem is that the Vlasov equation describes the time
evolution of fα1, therefore needs initial conditions.

Im(u)

Re(u)

u = ω/k

Figure 7.2: Possible integration paths around the pole.

Mathematically, the difficulty arises from the integral, since there is a pole at u = ω/k. Take
ω ∈ C in general. In the complex u–plane, the path for the integral is the real axis, but how do
we go around the pole?(††) The result depends on which side of the pole our path of integration
passes (figure 7.2): the physics basis of the problem must be reviewed as it does not tell us how
to treat the singularity.

(††) Improper integral: ∃ only as principal value

P.V.

∫
g(u) du ≡ lim

ε→0

{∫ ω
k−ε

−∞
+

∫ ∞
ω
k+ε

}
g(u) du. (7.57)
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Chapter 8 Wave–particle interactions

In the last lecture, we have reviewed the Vlasov equation

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0 (8.1)

and its properties

• f is conserved along particle orbits

• All functions of constants of motion satisfy Vlasov

• Total energy, momentum and entropy are conserved

Solving the Vlasov–Maxwell system for electrostatic waves(∗) we found after linearisation and
Fourier transformation the dispersion relation

D(ω, k) = 1 +
∑
α

ω2
pα

nαk

∫
R

dF0α

du

ω − ku
du = 0 (8.2)

We have seen that in the presence of particles with u ' ω/k, i.e. of particles that resonate with
the waves, there are problems in the evaluation of the integral. Today we’ll see what we can
calculate by ‘avoiding’ the resonance:

• Streaming instability

• Dispersion relation for electron plasma waves (in order to check for consistency with the
fluid model)

8.1 Streaming Instability

u0−v0 +v0

f0(u)

Figure 8.1: Velocity distribution for two electron streams with
T = 0.

To enhance the energy in parti-
cle collisions (to increase the proba-
bility of producing fusion reactions)
one can think of generating two
beams colliding head–on with each
other. It was immediately ob-
served in experiments trying to pro-
duce such a situation that the two
beams (or streaming plasmas) were
lost immediately, due to a strong in-
stability. The Vlasov model can
be used to calculate this instabil-
ity.

Consider the simplest possible one dimensional model, two beams of electrons with T = 0, shown
in figure 8.1 and described by

f0(u) =
1

2
ne

[
δ(u− v0) + δ(u+ v0)

]
(8.3)

(∗) In the electrostatic case the Maxwell equations reduce to the Poisson equation.
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We can calculate the dispersion relation for waves in such a plasma using eq.(8.2) by integrating
by parts:(†)∫ ∞

−∞

df0

du

du

ω − ku
=

f0

ω − ku

∣∣∣∣+∞
−∞
−
∫ ∞
−∞

du
kf0

(ω − ku)2

= −1

2
nek

{
1

(ω − kv0)2
+

1

(ω + kv0)2

}
(8.4)

we find with eq.(8.2)

D(ω, k) = 1−
ω2

pe

2

{
1

(ω − kv0)2
+

1

(ω + kv0)2

}
= 0 (8.5)

Eq.(8.5) is a polynomial equation of degree 4 and thus has always 4 roots.(‡) There are two
possibilities (see figure 8.2):

Case A
4 roots ∈ R ⇒ no problem ⇒ no instability, just oscillations.

Case B
2 roots ∈ R, 2 roots ∈ C. As D(ω, k) is a polynomial with real coefficients, the two complex
roots are complex conjugates, i.e. ω3 = ω∗4. Thus there is always one solution with =ω > 0
⇒ Instability.

ω2ω1

−kv0 kv0

1

D(ω,k)

ω

case B

case A

ω3A ω4A

Figure 8.2: Graphical solution of eq.(8.5).

The condition to have case B (instabil-
ity) is

D(ω = 0, k) = 1−
ω2

pe

k2v2
0

< 0

or

k2v2
0 < ω2

pe (8.6)

For sufficiently small k, i.e. suffi-
ciently long wavelengths, the instabil-
ity always occurs. The energy of the
beams is then dissipated into waves in
the plasma.

An illustration of a numerical simulation
of the streaming instability can be found
at
http://www.univ-orleans.fr/mapmo/membres/filbet/tsi_anim.html.

(†) Note that it does make sense to take the derivative of the δ–functional under the integral.
(‡) In fact, one sees easily that eq.(8.5) is degenerated to a quadratic equation for ω2. Thus the exact solution

can be written down easily,

ω2 =
ω2

pe

2
+ k2v2

0 ±
ω2

pe

2

√
1 +

(
kv0

ωpe

)2

so ω is not real (i.e. we have an instability). If ω2 < 0→ k2v2
0 < ω2

pe, which is the result of eq.(8.6).
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8.2 Electron Plasma Waves: Vlasov Treatment

We consider only electrons (Langmuir waves), with ions simply providing a neutralising back-
ground, and search for high frequency waves(§)

ω ≥ ωp � ku, ∀u (8.7)

This means we assume that no particles can go fast enough to resonate with the wave. In this
limit the resonant denominator becomes

1

ω − ku
=

1

ω

{
1

1− ku/ω

}
' 1

ω

{
1 +

ku

ω
+
k2u2

ω2
+
k3u3

ω3
+ · · ·

}
(8.8)

Let’s consider a 1–D maxwellian distribution

F0(u) =
ne√
2πvth

exp

{
− u2

2v2
th

}
(8.9)

where vth =
√
T/m as usual, and try the first two terms of the expansion eq.(8.8)

D(ω, k) ≈ 1 +
ω2

pe

nekω

{∫ ∞
−∞

du
dF0

du︸ ︷︷ ︸
0 as F0 is an even function

+

∫ ∞
−∞

du
dF0

du

ku

ω

}

= 1 +
ω2

pe

nekω

{
F0

ku
ω

∣∣+∞
−∞ −

∫
duF0

k
ω

}
= 1 +

ω2
pe

neω2

{
F0u

∣∣∣+∞
−∞︸ ︷︷ ︸

0

−
∫ ∞
−∞

F0 du︸ ︷︷ ︸
ne

}
= 1−

ω2
pe

ω2

Thus

D(ω, k) = 0 ⇐⇒ ω2 = ω2
pe ‘cold’ Langmuir oscillations (8.10)

We need to go to higher order in ku/ω to find thermal effects.(¶) Using∫ ∞
−∞

dF0

du
u2 du = 0

[
dF0

du
is an odd function

]
(8.11)∫ ∞

−∞

dF0

du
u3 du = u3 f0

∣∣∣+∞
−∞︸ ︷︷ ︸

→0

−3

∫ ∞
−∞

u2 F0 du = −3nev
2
th (8.12)

we find to order 3

1−
ω2

pe

ω2

{
1 + 3

k2v2
th

ω2

}
= 0 (8.13)

Assuming that ω2 � k2v2
th we can use the first order expression ω2 ' ω2

pe in the second denomi-
nator and finally get

ω2 ' ω2
pe + 3 k2v2

th. (8.14)

This is the result found in fluid theory with pressure term (with an adiabatic exponent γ = 3;
this corresponds to saying that the electron motion is one–dimensional along E ‖ k, and that it is
adiabatic, which is a good approximation for high frequency waves).

(§) we know from fluid theory that ω = ωp is a cut–off.
(¶) One shows easily that the solution to order 2jmax − 1 is

D(ω, k) = 1−
ω2

pe

ω2

jmax∑
j=0

(2j + 1)!
(kvth

ω

)2j
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8.3 Wave–Particle Interaction

In the following we will get to the core of the problem of wave–particle interaction, namely the
exchange of energy between particles and waves. We will discuss:

• Experimental motivation, see for example PRL 17 (1966) 172.

• Correct treatment of the Vlasov–Maxwell system:

– Laplace transform

– Landau integrals

– Calculation of wave (instability) potential

– Analytical continuation

– Ballistic modes and phase mixing

8.3.1 Experimental Motivation

Damping
People launch and detect waves: in the presence of resonant particles damping can be
observed over time scales much shorter than the collisional ones (or distances much shorter
than λmfp) → important for plasma heating (fusion and space).

Instability
Particles with v ∼ ω/k can drive the wave, i.e. transfer energy to the wave (over short time
scales). Example: α-particles can drive Alfvén waves in a tokamak reactor.

8.3.2 Correct Treatment of the Vlasov–Maxwell System

Re(p)0 p0

Im(p)

+
+

+

+poles

p0 + i∞

p0 − i∞

Figure 8.3: Domain of f̃α1(p).

Now we want to consider resonant par-
ticles: we must deal with the integral∫

R

dF0

du

u− ω
k

du (8.15)

properly. To treat the problem correctly
we need to consider initial conditions
and ‘maintain’ them through the lineari-
sation and plane wave (or similar) de-
composition.

The Laplace transform “respects” the
initial condition problem and causality.
It is defined as

f̃α1(p) =

∫ ∞
0

fα1(t)e−ptdt

where p ∈ C, (p↔ −iω)

and <{p} > p0 > 0

with p0 ∈ R+ such that the integral converges at t→∞ (figure 8.3).
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The inversion formula is

fα1(t) =
1

2πi

∫ p0+i∞

p0−i∞
f̃α1(p)e+ptdp (8.16)

where the integral is performed along the vertical line <{p} = p0 situated to the right of all
singularities (poles) of f̃α1(p).

The importance of the Laplace transform is that, contrarily to the Fourier transform, initial
conditions are “maintained” in the problem via(̃∂fα1

∂t

)
(p) = pf̃α1(p)− fα1

∣∣
t=0

(8.17)

Considering our linearised Vlasov–Poisson system(‖)
∂fα1

∂t
+ v · ikfα1 +

qα
mα

E · ∂fα0

∂v
= 0

ik · E =
1

ε0

∑
α

qα

∫
fα1 d3v

(8.18)

we apply the Laplace transform to the time variable t and Fourier to the spatial coordinates,
pf̃α1 − gα + ik · vf̃α1 − i

qα
mα

φ̃k · ∂fα0

∂v
= 0

k2φ̃ =
1

ε0

∑
α

qα

∫
f̃α1 d3v

(8.19)

where gα ≡ gα(x,v) := fα1(x,v, t = 0) has been defined. Inserting f̃α1 out of the first eq.(8.19)
into the second eq.(8.19) we get[

1− i

k2

∑
α

q2
α

ε0mα

∫
d3v

k · ∂fα0

∂v

p+ ik · v

]
φ̃(p) =

∑
α

qα
ε0k2

∫
d3v

gα
p+ ik · v

(8.20)

Choosing again k = kez and introducing

Fα0 :=

∫
fα0 dvx dvy Gα :=

∫
gα dvx dvy u := vz (8.21)

we get

φ̃(p) =
1

ε0k2

∑
α

qα

∫
du

Gα

p+ iku

1− i

k

∑
α

ω2
pα

nα

∫
du

dFα0/du

p+ iku

(8.22)

Noting that p corresponds to −iω, the potential in Laplace space can be written as

φ̃(p) =

−i
∑
α

qα

∫
du

Gα

u− ip/k

ε0k3 ε(ip, k)
(8.23)

(‖) Fourier transformation can be used for space coordinates only.
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where

ε(ip, k) = D(ip, k) = 1− 1

k2

∑
α

ω2
pα

nα

∫
du

dFα0

du

u− ip
k

(8.24)

Now we can invert the Laplace transform, formally

φ(t) =
1

2πi

∫ p0+i∞

p0−i∞
φ̃(p)e+ptdp (8.25)

with p0 such that – for <{p} > p0 > 0 – the integral
∫∞

0
e−ptφ(t)dt always converges. Stated

otherwise, p0 must be to the right of all poles of φ̃(p). The problem with the standard definition of
the Laplace transform is the restriction <{p} = <{−iω} = γ > p0 > 0. The physically interesting
damped waves (γ < 0) are not included. We therefore need to extend the definition to a domain
with <{p} < p0 by analytical continuation. This is done by moving the integration path that
defines the inverse Laplace transform

fα1(t) =
1

2πi

∫ p0+i∞

p0−i∞
f̃α1(p)eptdp (8.26)

to the left (p0 → −∞), but leaving all poles pj of f̃α1 on the same side of the contour (i.e. on the
left side; see figure 8.4).

Re(p)0 p0

Im(p)

+

+

+

+

C’

C

Figure 8.4: Analytical continuation of the inverse Laplace transform.

This exercise also tells us how to solve the problem of the integral over the velocity space in the
presence of a resonant denominator:∫

h(u)

u− ip
k

du
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In other words, the need to have the analytical continuation of φ̃(p) forces the contour of integration
to pass below the pole u = ip

k
if k > 0 (a similar result holds for k < 0), removing the ambiguity

(Landau’s rule). This rule is a consequence of analytical continuation (A.C.).

Im(u) Im(u)Im(u)

Re{p}<0Re{p}=0Re{p}>0

0 0 0 Re(u)Re(u)Re(u)

L’ L’’

C

L L

Figure 8.5: Start with <{p} > 0 and move the pole down until <{p} ' 0. Don’t confuse u–plane and p–plane!

For <{p} < 0 (see figure 8.5)

A.C.

∫
R

du
h(u)

u− ip
k

∣∣∣∣∣
<{p}<0

=

{∫
L

+

∫
L′

+

∫
L′′︸ ︷︷ ︸

=0 (equal and opposite contributions)

+

∫
C

}
h(u)

u− ip
k

du =

=

∫ ∞
−∞

h(u)

u− ip
k

du+ 2πi Res
u=ip/k

h(u)

u− ip
k

=

∫ ∞
−∞

h(u)

u− ip
k

du+ 2πih
( ip

k

)
For the case <{p} = 0, there are no paths L′, L′′ and the path C is only a half–circle. Moreover,
the principal value (P.V.) symbol has to be kept in this case(∗∗). Thus

A.C.

∫
R

du
h(u)

u− ip
k

∣∣∣∣∣
<{p}=0

= P.V.

∫
h(u)

u− ip
k

du+ iπ h

(
ip

k

)
(8.27)

To perform the calculation in practice, we distinguish three cases:

∫
R

h(u)

u− ip
k

du =



∫ ∞
−∞

h(u)

u− ip/k
du <{p} > 0

P.V.

∫
h(u)

u− ip/k
du+ iπ h(

ip

k
) <{p} = 0∫ ∞

−∞

h(u)

u− ip/k
du+ 2πih(

ip

k
) <{p} < 0

(8.28)

where h(u) is a regular function. Note that there is no discontinuity between different cases, and
that all integration contours that pass below the pole give the same result. The distinction of the
three cases is simply to make calculation easy.

(∗∗)

P.V.

∫ +∞

−∞
{· · · } dx ≡ lim

δ→0

{∫ x0−δ

−∞
{· · · } dx+

∫ +∞

x0+δ

{· · · } dx

}
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Having solved the mathematical difficulty (at least in principle!) we can go back to the physical
problem. To invert the Laplace transform we need to know the poles of the expression eq.(8.38)
for φ̃(p) (in the p–plane!).
These are:

• poles of the numerator∑
α

qα

∫
L

du
Gα(u)

u− ip
k

The symbol L means “according to Landau’s rule”.

• zeros of the denominator ε(ip, k) = 0

Note that this latter condition corresponds to the dispersion relation: each wave in the plasma is
a root of the equation ε(ip, k) = 0, therefore a pole for φ̃(p). In general, as stated before, p ∈ C,
and <{p} can be negative for some roots of the dispersion relation. In order to consider these
physically meaningful waves, we need to extend the definition of the inverse Laplace transform by
analytical continuation of φ̃(p) for all p down to <{p} < 0: this is done by moving the contour of
integration towards <{p} → −∞, but leaving the poles on the same side of the contour (figure 8.4).
By definition

φ(t) =
1

2πi

∫ po+i∞

p0−i∞
dp φ̃(p)ept ≡ 1

2πi

∫
C

dp φ̃(p)ept (8.29)

Now

φ(t) =
1

2πi

∫
C′

dp φ̃(p)ept (8.30)

where C ′ is the modified integration contour.
To calculate the integral, we close the contour in the complex plane (figure 8.6), so that we can
use the Cauchy formula (theorem of residues)∫

C

dp φ̃(p)ept =

∫
C′

dp φ̃(p)ept

=

∫
C′

dp φ̃(p)ept +

∫
C1

dp φ̃(p)ept︸ ︷︷ ︸
=0

+

∫
C2

dp φ̃(p)ept︸ ︷︷ ︸
=0

+

∫
Γ

dp φ̃(p)ept︸ ︷︷ ︸
=0

(8.31)

The integrals over C1, C2 and Γ are all equal to 0 because

φ̃(p)
|p|→∞−→ 1

p
−→ 0 (8.32)

For Γ, obviously ept → 0 for <{p} → −∞ and t > 0. For C1 and C2, <{p} < p0 and only the
imaginary part of p goes to infinity. Thus ept remains finite, but φ̃→ 0. Finally

φ(t) =
∑
j

Res
(
φ̃(p)ept, pj

)
=
∑
j

epjt Res
(
φ̃(p), pj

)
(8.33)

where the pj are the poles of φ̃(p)ept.(††) If pj is a pole of order n, the residue is given by

Res
(
φ̃(p), pj

)
=

1

(n− 1)!
lim
p→pj

dn−1

dpn−1

[
(p− pj)nφ̃(p)

]
(8.34)

(††) As ept is a regular function, the poles of φ̃(p)ept and φ̃(p) are the same.
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Re(p)0
+

+

+

+

C’

C

Γ

Im(p)

C2

p1

C1

p2

p3

p4

Figure 8.6: Contour for the inverse Laplace transform.

The behavior of φ (stable vs. unstable) depends on the sign of <{pj}:

φ(t) ∝

{
e+|<{pj}|t, <{pj} > 0 unstable

e−|<{pj}|t, <{pj} < 0 stable
(8.35)

Note
A hierarchy of poles can be established in terms of physical relevance: poles to the right
(the first we meet as we move the path of integration) are the most important, as they are
the most unstable (if <{pj} > 0), or the least stable (if <{pj} < 0). The long term response
of the plasma is dominated by the first pole p1, as φ(t) ∝ ep1t.
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8.4 Summary of the Landau treatment of the Vlasov–Maxwell System

• Start from the linearised, electrostatic (B1 ≡ 0), spatially Fourier transformed Vlasov–
Poisson system, eq.(8.18)

∂fα1

∂t
+ v · ikfα1 +

qα
mα

E · ∂fα0

∂v
= 0

ik · E =
1

ε0

∑
α

qα

∫
fa1 d3v

(8.36)

• Laplace transform. In order to

– keep the information of the initial condition fα1(t = 0)

– conserve causality

we apply the Laplace transform to the time variable t→ p, which is defined as

f̃α1(p) =

∫ ∞
0

fα1(t)e−ptdt, p ∈ C, <{p} > p0 > 0, (8.37)

with p0 ∈ R such that all poles pj of f̃α1 have <{pj} < p0. This yields eq.(8.23)

φ̃(p) =

−i
∑
α

qα

∫
du

Gα

u− ip/k

ε0k3 ε(ip, k)
(8.38)

• Analytical continuation. The problem with the standard definition of the Laplace transform
is the restriction <{p} = <{−iω} = γ > p0 > 0, i.e. the physically interesting damped
waves (γ < 0) are not included. Thus we have to extend the definition for <{p} < p0

by analytical continuation, which is done by moving the integration contour of the inverse
Laplace transform

fα1(t) =
1

2πi

∫ p0+i∞

p0−i∞
f̃α1(p)eptdp (8.39)

to the left (p0 → −∞), but leaving all poles pj of f̃α1 on same side of the contour (i.e. on
the left side; see figure 8.4).

• Calculation of the velocity integral∫ ∞
−∞

du
dFα0

du

u− ip
k

(8.40)

The initial definition of the Laplace transform with <{p} > 0 shows that the pole is (for
k > 0) in the upper half–plane of u. Thus the integration contour is initially below the pole.
After the analytical continuation of the p–domain, this has to stay this way (figure 8.5). As
any integration contour which passes below the pole gives the same result, there are several
possibilities to write the result. One possibility is eq.(8.28)

∫
R

h(u)

u− ip
k

du =



∫ ∞
−∞

h(u)

u− ip/k
du, <{p} > 0

P.V.

∫
h(u)

u− ip/k
du+ iπ h(

ip

k
), <{p} = 0∫ ∞

−∞

h(u)

u− ip/k
du+ 2πih(

ip

k
), <{p} < 0

(8.41)
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We did note that there is no discontinuity between the three cases, which one can see more
clearly in the compact representation∫

R

h(u)

u− ip
k

du = P.V.

∫
h(u)

u− ip
k

du+ iπ h

(
ip

k

)
, p ∈ C (8.42)

where the principal value integral is always taken on the level of the pole. However, the
‘best’ integration contour depends from case to case according to the particular choice of
h(u).

This is all we need to know to solve the dispersion relation ε(ip, k) = 0.

• Inversion of the Laplace transform. Applying the residue theorem to the closed integration
contour C ′ ∪ C1 ∪ C2 ∪ Γ (figure 8.6) one shows that the aid–contours C1, C2 and Γ are
harmless and finds eq.(8.33)

φ(t) =
∑
j

Res
(
φ̃(p)epjt, pj

)
=
∑
j

epjt Res
(
φ̃(p), pj

)
(8.43)

where the poles pj are either:

– zeros of the denominator, i.e. solutions of the dispersion relation ε(ip, k) = 0 (i.e.
waves).

– poles of the numerator∑
α

qα

∫
du
Gα(u)

u− ip
k

i.e. “ballistic modes”; less important, as they usually decay very quickly ⇒ <{p} < 0.

It is clear that the long term behavior will be dominated by the rightmost pole, as φ ∝∑
j e

pjt ≈ ep1t, where p1 is the pole with the maximum real part.

8.5 Ballistic Modes and Phase Mixing

The poles of the numerator of eq.(8.38) give rise to perturbations corresponding to collective
motion without being solutions of the wave dispersion relation. They are called ballistic modes
(i.e. dependent on the initial condition), and can come from

1. Singularities in Gα(u): This is unlikely, as Gα(u) is the initial perturbation of Fα(u) and it
is hard to imagine a physical case with singular (i.e. infinite energy) initial distribution.

2. For regular Gα(u), from the term
∫

du Gα(u)
u−ip/k

. It can be demonstrated that this integral can

give poles only for <{p} < 0, which are stable (for k > 0).

A physical way of seeing this is to go back one step and look for the origin of ballistic modes in
the expression for f̃α1(p). The expression for f̃α1(p) before integrating over velocities and before
inverting the Laplace transform reads

f̃α1(p, u) =
Gα

p+ iku
+ i

qα
mα

φ̃(p)
k dF0α

du

p+ iku
(8.44)
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Inverting the Laplace transform we get

fα1(t, u) =
1

2πi

∫
Gα

p+ iku
eptdp+ i

qα
mα

∫
φ̃(p)

k dFα0

du

p+ iku
eptdp (8.45)

The first term, along with terms of the same kind in φ̃(p), keeps the “memory” of the initial
conditions(∗). As there is a pole for p = −iku, the integrals in eq.(8.45) will give rise to terms of
the form(†)

fα,1(u) ∝ e−i(kt)uG(u) + ... (8.46)

which represent an oscillation in u–space with a “frequency” ωu = kt becoming larger and larger as
t increases. Thus

∫
fα1(u, t) du, on which macroscopic quantities depend – like n1 =

∫
fα1(u, t) du

– will become smaller and smaller. This phenomenon is known as phase mixing (figure 8.8). As a
result, microscopic perturbations remain but macroscopic effects decay exponentially (figure 8.7).

Figure 8.7: First order parallel distribution function (in phase components) at different z positions (grid at z = 0,
f = 43.5 kHz, λ ' 4.1 cm, δn/n = 5%). Shown on the right are the corresponding results for a linear

1-D Vlasov model: f1
ω,k(v‖, z) = f1(v‖, z = 0)ei(ω/v‖)z +

eφ0

kT

∂f0(v‖)

∂v‖
k‖

[
ei(ω/v‖)z − eik‖z

ω − k‖v‖

]
.

(∗) Remember that the Vlasov equation conserves entropy.
(†) The second integral in eq.(8.45) will also have contributions coming from the poles of φ̃(p), i.e. the solutions

of the dispersion relation.
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Figure 8.8: Typical LIF interferometric trace. The density pertubation δn ∝ exp(ikz) plotted as a function of z
and the exponential reduction in the wave amplitude, due to Landau damping, can be observed. See
also the appendix to this chapter.

8.5.1 Phase Mixing in a Free Streaming Plasma

Let us now calculate this phase mixing effect explicitly, in a simple case. Consider a free streaming
plasma, i.e. φ(t) = 0 (i.e. no macroscopic fields). In this case eq.(8.45) becomes

f1(t, u) =
1

2πi

∫
G(u)

p+ iku
eptdp = Res

(
G(u)

p+ iku
ept, p = −iku

)
= G(u)e−ikut (8.47)

where we have dropped the index α.

Example 1

Let us first consider an initial perturbation of the form G(u, k) = g(k) δ(u− u0) and calculate the
evolution of the density

n1(k, t) =

∫ ∞
−∞

du f1(t, u) =

∫ ∞
−∞

du g(k) δ(u− u0) e−ikut = g(k)e−iku0t (8.48)
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This means that if just a single velocity class carries a perturbation, there is no phase mixing
effect and therefore no decay.

Example 2

However, if we consider a distribution with a finite width in velocity space, e.g. the gaussian form:

G(u, k) =
g(k)√
2π∆u

exp

{
−(u− u0)2

2∆u2

}
(8.49)

we get

n1(k, t) =
g(k)√
2π∆u

∫ ∞
−∞

e−
(u−u0)2

2∆u2 e−ikutdu (8.50)

The perform the integration, we introduce a new variable η = u− u0 ⇒ dη = du. We obtain

n1(k, t) =
g(k)√
2π∆u

e−iku0t

∫ ∞
−∞

e−
η2

2∆u2−ikηt dη (8.51)

To solve this integral, let us set (“completing the square”)(
η2

2∆u2
+ ikηt

)
≡
(

η√
2∆u

+ ξ

)2

− ξ2 (8.52)

that gives, after explicit calculation

2ηξ√
2∆u

= ikηt ⇒ ξ =
i
√

2 kt∆u

2

thus

−
(

η2

2∆u2
+ ikηt

)
= −

(
η2

2∆u2
+ ξ

)2

+ ξ2 =

= −

(
η√
2∆u

+
i
√

2 kt∆u

2

)2

− (kt∆u)2

2
(8.53)

Now we substitute this term into the integral of eq.(8.51)

n1(k, t) =
g(k)√
2π∆u

e−iku0t

∫ ∞
−∞

exp

−( η√
2∆u

+
i
√

2 kt∆u

2

)2

− (kt∆u)2

2

dη

=
g(k) e−

(kt∆u)2

2

√
2π∆u

e−iku0t

∫ ∞
−∞

exp

−( η√
2∆u

+
i
√

2 kt∆u

2

)2
dη

and, by replacing

x =
η√
2∆u

+
i
√

2 kt∆u

2
, dη =

√
2∆udx (8.54)
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we finally obtain the solution

n1(k, t) =
g(k)√
π
e−iku0t e−

(kt∆u)2

2

∫ ∞
−∞

e−x
2

dx︸ ︷︷ ︸
√
π

= g(k)e−iku0te−
(kt∆u)2

2 (8.55)

The decay is now exponential in t2, and is faster for larger ∆u, i.e. broader distributions in velocity
space. It is the difference in phase of the different velocity classes that gives the decay. Again,
there is no loss of information in a microscopic scale, but the macroscopic perturbation decays
due to phase mixing.

8.5.2 Experimental Demonstration: Plasma Echo

This microscopic information can be recovered if we look at the non–linear interaction between
two perturbations. Let us look at this qualitatively using an experimental demonstration.

Remember that in the experiment we can think of the initial perturbation at a given position
(boundary), and the time evolution can be replaced by the evolution in space. So replacing
ut→ x, k → ω/u and x→ ωt/k we will have e−ikute−ikx → e−iωx/ue−iωt.

A first antenna, located at x = 0, excites a perturbation at ω1. A second antenna, at x = L,
excites a perturbation at ω2. The perturbations produced at a generic point x will be

f
(1)
1 (x, t) ∝ e−i

ω1
u
xe−iω1t (8.56)

f
(2)
1 (x, t) ∝ e−i

ω2
u

(x−L)e−iω2t (8.57)

Let us measure the amplitude of the perturbation resulting from the two antennas at ω = ω2−ω1

(assume ω2 > ω1). The relevant non–linear term, the one oscillating at the difference frequency,
is

f
(1)?
1 f

(2)
1 ∝ exp


i

u

[
(ω1 − ω2)x+ ω2L

]
︸ ︷︷ ︸

this is the term
giving phase mixing

−i(ω2 − ω1)t


(8.58)

So there will be no phase mixing, i.e. a macroscopic perturbation is possible, for

x =
ω2

ω2 − ω1

L (8.59)

This is what we observe experimentally, see figure 8.9. This provides a good proof of reversibility
in plasmas satisfying the hypothesis that lead to the Vlasov formulation of the kinetic problem.
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Figure 8.9: Echo measurement. The LIF signal oscillating at the difference frequency, (ω2 − ω1)/2π is shown,
along with the two first order waves (ω1 < ω2), which are damped before the appearance of the echo
oscillations. L = 41 cm is the distance between the two grids. The theory line is calculated from
zmax/L = ω2/(ω2 − ω1), where zmax is the position of the echo maximum.

8.6 Quantitative estimate of Landau damping

In practice we are interested in calculating the rate of growth or absorption of a wave that prop-
agates in the plasma. Writing ω = ωr + iγ we want to examine the case |γ| � |ωr|. In this limit
we can expand the dispersion relation around ω = ωr:

ε(ω, k) = ε(ωr + iγ, k) ' ε(ωr, k) + iγ
∂ε(ωr, k)

∂ωr
+ . . .

= εr(ωr, k) + iεi(ωr, k) + iγ
∂εr(ωr, k)

∂ωr
+ iγ

∂[iεi(ωr, k)]

∂ωr
+ . . .

= 0 (8.60)

Separating the real and imaginary part ε = εr + iεi we obtain
Real part: εr(ωr, k)− γ ∂εi(ωr, k)

∂ωr
+O(γ2) = 0

Imaginary part: εi(ωr, k) + γ
∂εr(ωr, k)

∂ωr
+O(γ2) = 0

(8.61)

Plasma Physics II Ambrogio FASOLI, CRPP/EPFL, 2010



8.6 Quantitative estimate of Landau damping page 97

We can have three different cases, depending on the relative order of the real and imaginary parts
of ε. For physical reasons we suppose that εr, εi are smooth functions of ωr.

• εr � εi. We have{
εr(ωr, k) = γ ∂εi

∂ωr

εi(ωr, k) = 0 ⇔ dF0

du

∣∣
u=w

k

= 0
⇒ γ =

εr(ωr, k)

∂εi(ωr, k)/∂ωr
(8.62)

but if εi = 0 there is no exchange of energy, that is inconsistent with the finite γ given by
eq.(8.62). Moreover, the dispersion relation obtained from eq.(8.62) would not be consistent
with the fluid limit. We conclude that this is not a physical case.

• εr ∼ εi. We obtain

εr(ωr, k) = 0 εi(ωr, k) = 0 (8.63)

that gives the dispersion relation, but there is no exchange of energy.

• εr � εi. Now εi is of the order γ, thus the term γ∂εi/∂ωr is of the order γ2 and can be
neglected. The equations for ωr and γ are decoupled:

εr(ωr, k) ' 0 (8.64)

γ = − εi(ωr, k)

∂εr(ωr, k)/∂ωr
(8.65)

and the result is consistent with both the fluid limit and the possibility that wave and
particles exchange energy.

We observe that only the third case gives physical results. Eq.(8.64) gives the real frequency(‡)

ωr and eq.(8.65) the damping rate: this is the new term originating from the Laplace transform
approach introduced by Landau. As

ε(ω, k) = 1−
∑
α

ω2
pα

nαk2

∫
L

du
dFα0

du

u− ω
k

(8.66)

applying the rule we derived for the Landau integral we can write

ε(ωr, k) = 1−
∑ ω2

pα

nαk2

∫
L

du
dFα0

du

u− ωr
k

= 1−
∑ ω2

pα

nαk2

{
P.V.

∫ ∞
−∞

du
dFα0

du

u− ωr
k

+ iπ
dFα0

du

∣∣∣∣
u=ωr

k

}
(8.67)

thus εr(ωr, k) = 1−
∑ ω2

pα

nαk2 P.V.
∫∞
−∞ du

dFα0
du

u−ωr
k

εi(ωr, k) = −π
∑ ω2

pα

nαk2
dFα0

du

∣∣
u=ωr

k

(8.68)

(‡) We already calculated the dispersion relation for Langmuir waves and for ion–acoustic waves in this way.
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8.6.1 Why is the damping rate proportional to the slope of F0?

We see from eq.(8.65) to eq.(8.68) that the damping rate is proportional to the slope of the equi-
librium distribution function Fα,0: γ ∝ dFα0/du|u=ωr

k
.

Where does it come from? Consider particles with velocities just larger than the wave phase
velocity u & ω/k. They can gain or lose energy depending on the relative phase of the wave —
but if they gain energy, their velocity increases and they go out of the resonance: they can not
exchange energy any more. If they lose energy, they slow down and stay longer in the resonance.
So, overall, they lose energy to the wave.
The opposite holds for particles with velocities just below the phase velocity u . ω/k. Those that
gain energy from the wave remain in the resonance longer, and the net effect is that they gain
energy from the wave.

ω/k u

F0(u)

du
dF0

u=ω/k

lose energy gain energy
(on average) (on average)

(a) (b)

Figure 8.10: (a) Particles with u . ω/k will gain energy from the wave and particles with u & ω/k will lose
energy to the wave. As there are more particles which gain energy, the overall effect is that the wave
is damped.
(b) Analogy with a surfer riding a wave.

The total energy balance is therefore given by the ratio between how many particles gain energy
from the wave (with u . ω/k) and how many give energy to the wave (u & ω/k). This balance
can be deduced from the slope of F0(u) around the resonance u ' ω/k (figure 8.10).

A (very) qualitative analogy can be drawn with surfers trying to catch an ocean wave: to ‘ride’
the wave (i.e. to be pushed by it) the surfer must prepare himself or herself more or less at the
speed of the wave (u ' ω/k), but just a little slower.
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By using the kinetic model for the plasma and the electrostatic approximation for the waves, we
have demonstrated that waves can be damped even in the absence of collisions. The damping
mechanism, referred to as Landau damping, resides in the interaction between waves and plasma
particles. We have calculated the Landau damping rate, finding that

γ ∝ dF0

du

∣∣∣∣
u=ω/k

(8.69)

i.e. the damping is proportional to the slope of the equilibrium distribution function at the wave
phase velocity (the wave–particle resonance).
After the rigorous mathematical explanation, let us consider a simpler, more intuitive point of
view.

8.7 An intuitive, semi-quantitative approach to Landau damping

Consider a charged particle in the field of a single e.s. wave. Its motion (in the one–dimensional
case) can be described by

d2x

dt2
=

du

dt
=

q

m
E0e

i(kx−ωt) (8.70)

As we are considering small amplitude waves, the perturbation to the motion due to the wave is
small, and in the exponent we can set x ' x0 + u0t (unperturbed trajectory, or ‘characteristic’),
where u0 is the velocity at t = 0. The integration yields

u(t) =
q

m
E0e

ikx0
ei(ku0−ω)t

i(ku0 − ω)
+ C (8.71)

and with the initial condition u(t = 0) = u0

C = u0 −
q

m
E0e

ikx0
1

i(ku0 − ω)
(8.72)

and then

u− u0 =
q

m
E0e

ikx0
ei(ku0−ω)t − 1

i(ku0 − ω)
(8.73)

For resonant particles (ku0 − ω ' 0) we can expand the exponential

ei(ku0−ω)t ≈ 1 + i(ku0 − ω)t+ ... (8.74)

and obtain

u− u0 '
q

m
E0e

ikx0t (8.75)

So the deviation from the unperturbed velocity grows linearly with t (within the approximations
adopted here) for the resonant particles. These are the ones that are responsible for the instability
or the damping of the wave. Note that the deviation can have different sign and values depending
on the phase term eikx0 .
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8.8 Stability criteria

The kinetic theory allows us to gain a deeper insight into the stability of a plasma. We can model
waves that we already found in the fluid model, characterised in general by variations of some
macroscopic quantities like density and potential. But we can also treat more subtle problems,
involving changes in phase space rather than in real space. In this case the interaction concerns
the waves and a small fraction of particles, the resonant ones. The instability is then “localised”
in phase space, and contrary to fluid instabilities we observe no bulk motion. We call this type of
waves micro–instabilities . Micro-instabilities are important, for example, to understand anomalous
transport, i.e. the transport that cannot be explained in terms of collisional process.
Note: we deal with waves here (ε = 0), not ballistic modes.

8.8.1 1st Stability Criterion (Norton–Gardner Theorem)

“If the total distribution function F0 has only one maximum then electrostatic waves are stable”(∗).
To prove this statement we start from the dispersion relation

ε(ip, k) = 1−
∑
α

ω2
pα

nαk2

∫
L

dFα0

du

u− ip
k

du

= 1−
ω2

pe

nek2

∫
L

dFe0
du

u− ip
k

du−
∑
α 6=e

ω2
pα

nαk2

∫
L

dFα0

du

u− ip
k

du

= 1−
ω2

pe

nek2

∫
L

d
du

(
Fe0 +

∑
α 6=e Z

2
α
me
mα
Fα0

)
u− ip

k

du

= 1−
ω2

pe

nek2

∫
L

dF0

du

u− ip
k

du

where we have introduced the total distribution function

F0 := Fe0 +
∑
α 6=e

Z2
α

me

mα

Fα0 (F0 ∼ Fe0) (8.76)

and the integral must be calculated according to the Landau rules. We replace ip = i(−iω) =
ωr + iγ and show that the dispersion relation cannot be satisfied if γ > 0 (instability). In this case
the Landau integral can be evaluated on the real axis

1−
ω2

pe

k2ne

∫ ∞
−∞

du
dF0

du

(u− ωr
k

) + iγ
k

(u− ωr
k

)2 + (γ
k
)2

= 0 (8.77)

so the equations for real and imaginary parts can be identified:

Real part : 1−
ω2

pe

k2ne

∫ ∞
−∞

du
dF0

du

u− ωr
k

(u− ωr
k

)2 + (γ
k
)2

= 0 (8.78)

Imaginary part :

∫ ∞
−∞

du
dF0

du

1

(u− ωr
k

)2 + (γ
k
)2

= 0 (8.79)

(∗) This is also an intuitive result: if a Maxwellian for example had unstable character, plasma “thermodynam-
ics” (based on an equilibrium state) would not make sense.
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Doing a change of variable u′ = u − umax, where umax is the position of the maximum of F0, we
get

Real part : 1 −
ω2

pe

k2ne

(
umax −

ωr
k

)∫ ∞
−∞

du′
dF0

du′
1

(u′ + umax − ωr
k

)2 + (γ
k
)2

−
ω2

pe

k2ne

∫ ∞
−∞

du′
dF0

du′
u′

(u′ + umax − ωr
k

)2 + (γ
k
)2

= 0 (8.80)

Imaginary part :

∫ ∞
−∞

du′
dF0

du′
1

(u′ + umax − ωr
k

)2 + (γ
k
)2

= 0 (8.81)

Using the second equation in the first we have

1−
ω2

pe

k2ne

∫ ∞
−∞

du′
u′ dF0

du′

(u′ + umax − ωr
k

)2 + (γ
k
)2

= 0 (8.82)

But if F0 has only one maximum it must satisfy

u′
dF0

du′
= (u− umax)

dF0

d(u− umax)
≤ 0, ∀ u′ ∈ R (8.83)

Thus we can write

1 +
ω2

pe

k2ne

∫ ∞
−∞

du′
∣∣u′ dF0

du′

∣∣
(u′ + umax − ωr

k
)2 + (γ

k
)2
> 0 (8.84)

where we see clearly that the left hand side is always positive. So the dispersion relation cannot
be satisfied and the statement is proven.

umax u'

u'          <0dF0

du'

(u'=0)

u'          <0dF0

du'

Figure 8.11: Sketch illustrating the inequality (8.83). For u′ ≤ 0, dF0

du′ is ≥ 0; for u′ ≥ 0, dF0

du′ is ≤ 0.

8.8.2 Nyquist Criterion for Instability

So far we have seen a sufficient condition for stability, i.e. a necessary condition for instability : F0

must have at least one minimum. Now we consider a sufficient condition for instability (“Nyquist
criterion”). We consider the Landau integral as a mapping (figure 8.12).
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Re{ω/k}

Im{ω/k}

STABLE

UNSTABLE

Re{G}

Im{G}

UN
ST

AB
LE

possible roots of the
dispersion relation

G(Im{ω/k}=0)

Figure 8.12: G as a mapping. In the figure on the right, the thick red line indicates possible roots of the dispersion
relation. In the case shown here there are no unstable roots.

G : C→ C, ω
k
7→ G

(
ω
k

)
=

∫
L

dF0

du

u− ω
k

du, k ∈ R+ (8.85)

where F0 has been defined in (8.76). With this definition

ε(ω, k) = 1−
ω2

pe

nek2
G
(
ω
k

)
= 0 (8.86)

is the dispersion relation, or

G
(
ω
k

)
=
nek

2

ω2
pe

∈ R+ (8.87)

So for roots of the dispersion relation, G must assume positive real values. As the limit between
the stable and the unstable domain is the line

=
{
ω
k

}
= 0 (8.88)

we are interested to map it using G and see if any of the solutions of the dispersion relation
G
(
ω
k

)
∈ R+ lies in the unstable domain G

(
=
{
ω
k

}
> 0
)
. Or in other words: the question is

whether the mapping of the unstable domain, G
(
=
{
ω
k

}
> 0
)

includes parts of the positive real
axis of the G–plane (figure 8.13).

NOTE: for ω
k
→ ∞, we have <(G)→ 0+ and =(G)→ 0−

for ω
k
→ −∞, we have <(G)→ 0+ and =(G)→ 0+

Let us examine what happens when the mapping of the limit line G
(
=
{
ω
k

}
= 0
)

crosses the real
axis ={G} = 0. According to Landau we have

G
(
ω
k

)
= P.V.

∫ dF0

du

u− ω
k

du+ iπ
dF0

du

∣∣∣∣
u=ω/k

(8.89)
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Since =
{
ω
k

}
= 0, the imaginary part of G is

=(G) = π
dF0

du

∣∣∣∣
u=ω/k

(8.90)

thus

G
(
=
{
ω
k

}
= 0
)
∈ R ⇐⇒ dF0

du

∣∣∣∣
u=ω/k

= 0 (8.91)

i.e. crossings of the limit line with the real axis in the G–plane occur at extrema of the equilibrium
distribution function F0 (figure 8.13).

Re{G}

Im{G}

UN
ST
AB
LE

G(Im{ω/k}=0)

C
A B

u

F0(u)

ABC

Figure 8.13: Example of instability (note that the curve can be more complex). The number of crossings of
={G} = 0, i.e. points A,B,C, corresponds to the number of extrema of F0(u). Here B represents
a minimum, while A,C are maxima. Roots of the dispersion relation between A and B are then
unstable.

The direction in which the limit line passes through the real axis tells us which kind we have:(†)

? ={G}: from < 0 to > 0⇐⇒ dF0

du
: from < 0 to > 0 =⇒ minimum of F0

? ={G}: from > 0 to < 0⇐⇒ dF0

du
: from > 0 to < 0 =⇒ maximum of F0

The presence of a minimum in the distribution function is necessary but not sufficient to have
instability. To have a sufficient condition for instability we have to demand additionally that

<
{
G
(
ω
k

)}
ω/k=umin

> 0 (8.92)

(†) A little “detail” in this argumentation is that we assume that the orientation of the limit line is always
counter–clockwise. Let us argument in the following way: take the most simple physical case with F0 having
only one maximum. Then the argumentation of section 8.8.1 tells us that the maximum is mapped to the
negative real axis of the G–plane. Furthermore we know that the points ω/k = ±∞ are both mapped to
G = 0, so the orientation of the limit line is in fact counter–clockwise in this case. In order to produce the
other cases we change F0 continuously and within the limitations of its physical sense, so we will have a
slightly deformed limit line, which will not change its orientation for non–pathological F0.
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i.e. we cross the ={G} = 0 axis on the right side. Integration of eq.(8.89) yields

<
{
G(ω

k
)
}
ω/k=umin

= P.V.

∫ ∞
−∞

dF0

du

u− umin

du

= lim
ε→0

{∫ umin−ε

−∞

dF0

du

u− umin

du+

∫ ∞
umin+ε

dF0

du

u− umin

du

}
= lim

ε→0

{
F0(u)

u− umin

∣∣∣∣umin−ε

−∞
+

F0(u)

u− umin

∣∣∣∣∞
umin+ε

+

∫ umin−ε

∞

F0(u)

(u− umin)2
du+

∫ ∞
umin+ε

F0(u)

(u− umin)2
du

}
= lim

ε→0

{
F0(umin − ε)

−ε
− F0(umin + ε)

ε

+

∫ umin−ε

−∞

F0(u)

(u− umin)2
du+

∫ ∞
umin+ε

F0(u)

(u− umin)2
du

}
= lim

ε→0

{
− 2

F0(umin)

ε
+

∫ umin−ε

−∞

F0(u)

(u− umin)2
du+

∫ ∞
umin+ε

F0(u)

(u− umin)2
du

}
= lim

ε→0

{
−
∫ umin−ε

−∞

F0(umin)

(u− umin)2
du−

∫ ∞
umin+ε

F0(umin)

(u− umin)2
du

+

∫ umin−ε

∞

F0(u)

(u− umin)2
du+

∫ ∞
umin+ε

F0(u)

(u− umin)2
du

}
= lim

ε→0

{∫ umin−ε

−∞

F0(u)− F0(umin)

(u− umin)2
du+

∫ ∞
umin+ε

F0(u)− F0(umin)

(u− umin)2
du

}
= P.V.

∫ ∞
−∞

F0(u)− F0(umin)

(u− umin)2
du ≡

∫ ∞
−∞

F0(u)− F0(umin)

(u− umin)2
du (8.93)

where we have used the following approximation F0(umin− ε) +F0(umin + ε) ' 2F0(umin) between
the 4th and 5th line and between the 5th and 6th line we used the identity

2

ε
=

umin−ε∫
−∞

du

(u− umin)2
+

∞∫
umin+ε

du

(u− umin)2
(8.94)

Note that as umin is a minimum the last integral in eq.(8.93) is not singular(‡), thus there is no
need to write the principal value. Finally we have the following sufficient condition for instability :

• F0 has a minimum at umin

and

•
∫ ∞
−∞

F0(u)− F0(umin)

(u− umin)2
du > 0

The second point means that the minimum must be “sufficiently deep” (figure 8.14).

(‡) To be seen writing the Taylor series of F0(u) around umin and using dF0/du|umin
= 0.
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u

F0(u)

ABC

stabilising

destabilising
stabilising

Figure 8.14: The minimum in F0 (point B) has to be sufficiently “deep” for instability. All points for which
F0(u) > F0(umin) are destabilizing and all points for which F0(u) < F0(umin) are stabilizing, but
of course only those close to the region u ∼ umin give a significant contribution.
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Chapter 9 Waves in a hot magnetized plasma (kinetic model)

We’ll look at some features of waves in a plasma described by the kinetic model in the presence
of an equilibrium magnetic field, B0. The main concepts of wave–particle resonance, instability
and (collisionless) Landau damping remain the same as in the case of B0 = 0, but new features
appear. We’ll review them considering only the main steps of the calculation.

We start from the general wave equation{
N2

[
kk

k2
− 1

]
+ ε

}
· E = 0 (9.1)

where N = kc/ω and ε = 1 + i
ε0ω
σ. For electrostatic waves the wave equation becomes

ε · E = 0 (9.2)

The problem is to find ε (or σ). To do it in the kinetic model, we start from the Vlasov equation,
with B0 6= 0, and linearise(∗)

∂f1

∂t
+ v · ∂f1

∂x
+

q

m
(E + v ×B) · ∂f0

∂v
+

q

m
(v ×B0) · ∂f1

∂v
= 0 (9.4)

where we wrote E ≡ E1 and B ≡ B1 for simplicity, or

Df1

Dt
= − q

m
(E + v ×B) · ∂f0

∂v
(9.5)

where

D

Dt
≡ ∂

∂t
+ v · ∂

∂x
+

q

m
(E0 + v ×B0) · ∂

∂v
=

∂

∂t
+ v · ∂

∂x
+

q

m
(v ×B0) · ∂

∂v
(9.6)

is the derivative along the unperturbed trajectories

ẋ = v (9.7)

v̇ =
q

m
v ×B0 (9.8)

Assuming that f1 → 0 as t→ −∞, we can write

f1(x,v, t) = − q

m

∫ t

−∞
dt′
[
E(x′, t′) + v′ ×B(x′, t′)

]
· ∂f0(v′)

∂v′
(9.9)

where (x′,v′) are the unperturbed trajectories (‘characteristics’) that pass through (x,v) at t′ = t.
Let’s express B as a function of E:

∇× E = −∂B

∂t
⇐⇒ B =

k× E

ω
(9.10)

(∗) Note that

(v ×B0) · ∂f0

∂v
= 0 (9.3)

in order to have an equilibrium state (df0/dt = 0). Thus f0 ≡ f0(v‖, v⊥), where v‖ and v⊥ are constants of
motion.
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We consider all perturbed quantities

∝ ei(k·x−ωt)+ηt (9.11)

where η is a small positive quantity which makes the perturbation vanish for t→ −∞. So

f1(v)ei(k·x−ωt)+ηt = − q

m

∫ t

−∞
dt′
{[

1− v′ · k
ω

]
E +

v′ · E
ω

k

}
· ∂f0

∂v′
ei(k·x′−ωt′)+ηt′ (9.12)

or

f1(v) = − q

m

∫ t

−∞
dt′
{[

1− v′ · k
ω

]
E +

v′ · E
ω

k

}
· ∂f0

∂v′
eik·(x′−x)−(iω−η)(t′−t) (9.13)

We now have to plug in the unperturbed trajectories, B0 = B0ez,
dv′

dt′
= Ω(v′ × ez), or

v′ =

 cos Ω(t′ − t) sin Ω(t′ − t) 0
− sin Ω(t′ − t) cos Ω(t′ − t) 0

0 0 1

 · v (9.14)

Using cylindrical coordinates

vx = v⊥ cos θ (9.15)

vy = v⊥ sin θ (9.16)

vz = v‖ (9.17)

we can write this as

v′ =

v⊥ cos{θ − Ω(t′ − t)}
v⊥ sin{θ − Ω(t′ − t)}

v‖

 (9.18)

Finally we obtain for the positions

x′ − x =
1

Ω

−v⊥ [sin {θ − Ω(t′ − t)} − sin θ]
v⊥ [cos {θ − Ω(t′ − t)} − cos θ]

v‖Ω(t′ − t)

 (9.19)

Without restriction of generality we choose k = (0, ky, kz) and define τ := t′ − t.

The key point is the exponential in the integral which becomes

exp
[
ik · (x′ − x)

]
= exp

{
i
kyv⊥

Ω

[
cos(θ − Ωτ)− cos θ

]
+ ikzv‖τ

}
= exp

{
i
kyv⊥

Ω

[
sin
(
θ − Ωτ +

π

2

)
+ sin

(
−θ − π

2

)]
+ ikzv‖τ

}
=

∞∑
n=−∞

Jn

(
kyv⊥

Ω

)
exp

{
in
(
θ − Ωτ +

π

2

)}
×

∞∑
m=−∞

Jm

(
kyv⊥

Ω

)
exp

{
im
(
−θ − π

2

)}
exp

{
ikzv‖τ

}
=

∞∑
n=−∞

∞∑
m=−∞

in−mJn

(
kyv⊥

Ω

)
Jm

(
kyv⊥

Ω

)
exp

{
in(θ − Ωτ)− imθ + ikzv‖τ

}
,
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where we used the generator of Bessel functions eia sin ξ =
∑∞

n=−∞ Jn(a)einξ. So the perturbed
distribution function contains an infinite sum of harmonics of Ω, weighted by the Bessel functions

Jn

(
kyv⊥

Ω

)
. This is a finite Larmor radius effect, as kyv⊥

Ω
= kyρ is the ratio between the Larmor

radius and the wavelength λ ∝ k−1
y : the effect is due to the fact that the particles feel a different

wave field during their gyro–motion. If kyρ� 1, then the effect tends to disappear.

The next step is to replace the v′ in the integrand by eq.(9.18) and to calculate the current density

j =
∑
α

qαnα0

∫
d3v v fα1(v) (9.20)

Then the conductivity tensor σ can be identified and we automatically have the dielectric tensor
ε. The velocity integration is done in cylindrical coordinates d3v = v⊥dv⊥dv‖dθ, where the θ–
integration∫ 2π

0

dθ ei(n−m)θ = 2πδn,m (9.21)

reduces the double sum to a single one. The details of the rather lengthy calculation can be found
in [1](10–4). The result is

ε =[
1−

∑
α

ω2
pα

ω2

]
1−

∑
α

ω2
pα

ω2nα0

∑
n

∫
d3v

Tα(v⊥, v‖)

kzv‖ − ω + nΩα

[
nΩα

v⊥

∂fα0

∂v⊥
+ kz

∂fα0

∂v‖

]
(9.22)

with

Tα(v⊥, v‖) =


v2
⊥J
′2
n

inv2
⊥

aα
JnJ

′
n iv⊥v‖JnJ

′
n

− inv2
⊥

aα
JnJ

′
n

n2v2
⊥

a2
α
J2
n

v⊥v‖
aα

nJ2
n

−iv⊥v‖JnJ
′
n

v⊥v‖
aα

nJ2
n v2

‖J
2
n

 (9.23)

where aα ≡ kyv⊥
Ωα

is the argument of the Bessel functions, and J ′ means the derivative with respect
to the argument. Here we note the resonant denominator kzv‖−ω+nΩα, which can be interpreted
as Doppler shifted cyclotron resonances

ω − kzv‖ = nΩα (9.24)

9.0.3 Perpendicular Propagation (kz = 0)

In the case of purely perpendicular propagation (kz = 0), the resonances are simply ω = nΩα.
These resonances, again, are a finite Larmor radius effect. If kyρ � 1, only the low–order res-
onances are important, as the “weight” given by the Bessel functions goes down as (kyρ)|n|, i.e.
rapidly with n.

Note that, for kz 6= 0 (kz can be very small, but in practice it is difficult to have kz exactly zero),
the resonance ω = nΩα + kzv‖ is satisfied for different values of ω−nΩα. For a whole distribution
characterized by a thermal velocity vth,‖, the ‘width’ of the resonance, (ω−nΩα)max−(ω−nΩα)min

is of the order of kzvth,‖. Thus, for a toroidal plasma, where |B| ∝ R−1, the cyclotron resonance
layer has a finite width, as illustrated in figure 9.1.
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ω � kzv‖=nΩ

Figure 9.1: Sketch of the toroidal vessel with the width of the resonance layer.

Such a finite width layer exists also if kz = 0, mainly for electrons, because of relativistic effects,
which should be included as corrections to the mass (m = γm0) in the cyclotron frequency

ω − nΩα

γ
= 0 γ =

(
1− v2

c2

)−1/2

> 1

The resonance becomes in this case velocity dependent and it is a real wave-particle resonance.
The absorption at the cyclotron wave-particle resonances can be quite efficient, and is used to
heat particles (in particular electrons, if kz = 0) in fusion experiments.

The resonances at ω = nΩ were not at all present in fluid theory and represent a very useful
mechanism to heat and drive current in fusion plasmas (when in practice, the wave injection can
only be perpendicular to B0).
The absorption mechanism can be qualitatively described similarly to the Landau damping studied
for B0 = 0.

ω = Ω: At the fundamental frequency (ω = Ω), strong interaction from a distribution of particles is
possible only for relatively large wave-lengths kyρL � 1 (or λ� ρL). If we had the opposite
case, λ ∼< ρL, then the particle motion would not be able to stay in phase with the wave,
a necessary condition for efficient energy exchange (see Fig.9.2).

ω = 2Ω: At the first harmonic, strong interaction is possible if kyρL ∼ 1. When λ ∼ ρL the particle
can encounter a field of the opposite sign in the second half of its Larmor cycle compared to
that of the first half (see Fig.9.2), so it can be continuously accelerated (or decelerated).

If the opposite was true (λ� ρL for ex.), there would be acceleration in one half of the Lar-
mor orbit, deceleration in the other half, and the net effect (in the absence of the collisions)
would be vanishing.

ω = nΩ: For higher harmonics (n large), to have resonance and effective exchange of energy, it should
be ω ∼ kyv⊥, so kyρL ∼ ω

Ω
= n

Note: This is consistent with our Bessel-function series, as the maximum of Jn(a) increases with
n.

Plasma Physics II Ambrogio FASOLI, CRPP/EPFL, 2010



9 Waves in a hot magnetized plasma (kinetic model) page 110

X1

X2

Figure 9.2: Interaction between a particle and X1/2 waves.

Naturally, we need to explore the ’accessibility’ to heat the plasma. As stated above, we need
to reach a resonance by avoiding cut-offs. This can be visualized in a diagram (CMA diagram),
which takes into account the two main parameters varying radially, n and B (see ex.2, series XIII):

X =
ω2
p

ω2
(∝ n) Y =

Ω2
e

ω2
(∝ B2

0)

Cut-offs:

O−mode : X = 1
X−mode : Y = (1−X)2

Resonances:

ω = wUH Y = 1−X
ω = lΩe Y = 1

l2
(1, 0.25, ...)

0 0.5 1 1.5 2
0

0.2
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1.2
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1.6

1.8
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−m

ode cutoff

1st harmonic res.

2nd harmonic res.

UH resonance X 
m

od
e 

cu
to

ff

Y

Simple CMA diagram for X and O mode, perpendicular injection

 

 
1st harmonic propagation
2nd harmonic propagation

X n

B

Figure 9.3: Clemmow-Mullaly-Allis diagram for X and O mode. Wave trajectories are shown for 1st and 2nd

harmonic injection and for different core plasma densities. Note that for low field side X1 injection
the wave first encounters a cutoff. X2 may encounter a cutoff or resonance, depending on the density.
O mode has a higher density limit but will eventually be cut off at the plasma frequency.
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The fundamental O-mode and the second harmonic of the X-mode (usually called X2) can reach
the resonance from the outside, where B is lower, before they reach the cut-off. Heating using
second harmonic X2, or third harmonic X3, is commonly used on the TCV tokamak (Fig. 9.4) at
CRPP/EPFL, for example.

Figure 9.4: The TCV tokamak and the X2-X3 ECH system.

9.0.4 New waves introduced by the kinetic model with B0 6= 0

We have seen so far that the kinetic model introduces resonances at nΩ for perpendicular propa-
gation, thus modifying the properties of the fluid waves. Moreover, the kinetic model revealed the
existence of Bernstein waves – electrostatic waves not predicted by the fluid model. The dispersion
relation is similar for ions and electrons, and an example is given in figure 9.5 for the case of ions.

1

2

3

ω/Ωi

ky

Figure 9.5: Dispersion relation for Bernstein waves. Waves with vg = ∂ω/∂ky opposite to vph = ω/ky are called
“backward waves”.
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The Bernstein waves are slowly propagating, longitudinal, electrostatic waves. They are ‘back-
ward’ waves, because the phase velocity and the group velocity have opposite sign. An interesting
property of electron Bernstein waves (EBW) is that they do not have a cut-off for high density,
thus they can be used to heat dense plasmas. The main disadvantage is that, being electrostatic
waves, they cannot propagate in vacuum and cannot be launched by an external antenna. They
can nevertheless be driven via a ‘mode conversion’ in the plasma, from antenna driven electro-
magnetic waves.

9.0.5 Parallel Propagation (ky = 0)

This section has not been treated in the lecture but one can refer to the first exercise of Problemset
13.

For parallel propagation (ky = 0) the argument of the Bessel functions is zero and we can use

Jn(0) = δn,0 (9.25)

So only the term n = 0 persists. However, there is also the derivative of the Bessel functions J ′n(a)
and the term n

a
Jn(a) which appear in the tensor Tα. Using the formulae [2] (eq. 9.1.27):

n

a
Jn(a) =

1

2

[
Jn−1(a) + Jn+1(a)

]
(9.26)

J ′n(a) =
1

2

[
Jn−1(a)− Jn+1(a)

]
(9.27)

we verify that

Tα =


v2
⊥
4

[
δn,1 + δn,−1

]
i
v2
⊥
4

[
δn,1 − δn,−1

]
0

−i
v2
⊥
4

[
δn,1 − δn,−1

] v2
⊥
4

[
δn,1 + δn,−1

]
0

0 0 v2
‖δn,0

 (9.28)

With the notation we used in Lecture 6 we have

ε =

 ε1 −iε2 0
iε2 ε1 0
0 0 ε3

 (9.29)

where

ε1 = 1−
∑
α

ω2
pα

ω2

{
1 +

∫
d3v

v2
⊥

4nα0

[
kz

∂fα0

∂v‖
+ Ωα

v⊥

∂fα0

∂v⊥

kzv‖ − ω + Ωα

+
kz

∂fα0

∂v‖
− Ωα

v⊥

∂fα0

∂v⊥

kzv‖ − ω − Ωα

]}
(9.30)

ε2 =
∑
α

ω2
pα

ω2

∫
d3v

v2
⊥

4nα0

[
kz

∂fα0

∂v‖
+ Ωα

v⊥

∂fα0

∂v⊥

kzv‖ − ω + Ωα

−
kz

∂fα0

∂v‖
− Ωα

v⊥

∂fα0

∂v⊥

kzv‖ − ω − Ωα

]
(9.31)

ε3 = 1−
∑
α

ω2
pα

ω2

{
1 +

∫
d3v

v2
‖

nα0

kz
∂fα0

∂v‖

kzv‖ − ω

}
(9.32)

In the limit of Tα → 0, i.e. when the distribution function is described by a delta function,
f(v) → δ(v), one finds the same dispersion relation as in the fluid model (see ex.1, series 13).
When T 6= 0, there are significant differences.
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Chapter 10 Examples of non–linear effects in plasmas

Our treatment of waves in plasmas and of wave–particle interaction was based upon the lineari-
sation of the equations describing the plasma and the electromagnetic fields.

We have considered only the first order terms, assuming small perturbations to the equilibrium
state. This allowed us to employ linear decomposition techniques (Laplace and/or Fourier trans-
forms) to solve the problem.

However, in many real physical systems higher order terms(∗) can play an important role. This
may happen for

• Externally driven high amplitude waves (e.g. to heat the plasma)

• Unstable waves. As f1,E ∝ eγt, for γ > 0 the amplitude of the perturbations grows to high
levels. But this exponential growth cannot go on forever(†), and the non–linear terms will
lead to a saturation of the instability (see Appendix F).

separatrix

“trapped” orbits “passing” orbits

x

x

x

E

eΦ

(a)

(b)

(c)
v

-λ/2 λ/2

Figure 10.1: Electrons can be trapped in the potential well of a
wave. (a) Electric field. (b) Potential energy. (c) Tra-
jectories in the phase space.

In this lecture we will see some ex-
amples of non–linear phenomena in
wave–particle interactions, although
in principle the two aspects are cou-
pled, namely:

• Non–linear response of particles
to waves

– Trapping of particles in
wave potential

– Modifications of f(v) by
large amplitude waves

– Nonlinear Landau damp-
ing

– Wave–induced determinis-
tic chaos

• Modification of linear wave dy-
namics by strongly perturbed
f(v)

– Wave steepening, soliton
formation

10.1 Wave-particle nonlinear interactions

Wave–particle interaction involves resonant particles that will easily respond non–linearly, i.e.
with strong modifications of their trajectories, reflected in substantial modifications of f0(v).

(∗) Describing the fields and/or the particles, e.g. the particle distribution function f(v).
(†) Otherwise it would correspond to infinite energy.
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10.1.1 Particle trapping – qualitative description

Let’s take a 1–D electrostatic wave and consider only the electrons. We assume weak damping,
so that E ∼ const over a few wavelengths (or periods) of the wave. So

E(x, t) = E sin(kx− ωrt) (10.1)

In a frame moving at the same velocity as the wave phase velocity x → x′ + vpht the electrons
see a static field E(x′) = E sin(kx′), to which corresponds the potential φ(x′) = −

∫
E(x′) dx′ =

E/k cos(kx′). In the frame of the wave the electrons can therefore be ‘trapped’ in a potential
energy well of depth 2eφ = 2eE/k (figure 10.1). This happens for electrons with kinetic energy
smaller than the maximum wave potential energy, so the limit velocity is determined by the
condition

1

2
mev

2
trapping = 2eφ (10.2)

that leads to

vtrapping = 2

√
eφ

me

= 2

√
e

me

E

k
. (10.3)

A measurable effect of the trapping of particles in wave potential is the creation of a ‘plateau’
(figure 10.2) in the (time averaged) zero order distribution f0(v) as trapped particles ‘bounce’
back and forth in the potential well with a characteristic “bounce time” τB.(‡)

f0(v)

x

vω/k

plateau
Figure 10.2: Plateau in the zero–order distribution function due

to trapped particles. Note that such an ‘asym-
metry’ in the distribution function corresponds to
a current in the plasma. In tokamaks, a plasma
current is needed to create a poloidal magnetic
field which is needed to achieve magnetohydrody-
namical stability. Usually, this current is induced
by a transformer, with the obvious disadvantage
that the tokamak cannot operate continuously. So
creating a current by injection of waves into the
plasma (“current drive”) is of great interest in or-
der to obtain a steady–state fusion power plant.

(‡) Assuming a small width of the potential well, the bounce time for an electron with v ∼ ωr/k is calculated
from

meẍ = −eE sin(kx) ≈ −eEkx. (10.4)

So we can define a bounce frequency ω2
B = eEk/me or

τB =
2π

ωB
= 2π

√
me

eEk
=

4π

kvtrapping
(10.5)
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The wave–particle resonance has therefore a finite ‘width’ in the velocity space, ∆vres ∝
√
E, in the

sense that particle motion in that region is strongly modified (see Appendix G for measurements
of plateau formation). Trapping and plateau formation have a strong influence on:

• Wave absorption/damping (e.g. for externally launched waves). As γ ∝ df0/du, the damp-
ing rate varies due to trapping (figure 10.3)

→ Non–linear Landau damping (§)

Figure 10.3: Measurement of the amplitude
profile of a non–linear elec-
tron wave excited at x = 0,
showing non–monotonic decay
[S.M. Hamberger et al, Phys.
Rev. Lett. 28 (1972) 1114].

If the condition γ > ωB is not satisfied, the trapping effect starts to play a role.

• Instability growth. Again df0/du is modified, in particular it is reduced

→ Saturation of the linear instabilities

Note that two characteristic time scales are in competition in the non–linear process: the colli-
sional(¶) time scale τcoll. and the bounce time τB:

→ If τcoll. � τB particles move out from the resonance before they can create a plateau. In this
case we expect instabilities to be saturated, or damped by collisions anyway.

→ If τcoll. � τB the formation of a plateau is robust. Steady–state is reached through saturation
(see Appendix G for experimental measurements).

→ If τcoll. ∼ τB we can have oscillations around a plateau (γ ∼ 0), with f0 characterised by a
finite slope (γ 6= 0): “Fishbone–like oscillations” or “bursts” (see Appendix F).

10.1.2 Deterministic chaos in wave-particle interaction

The wave energy absorbed by resonant particles via Landau damping is localised in the velocity
space. But we might be interested in phenomena that redistribute this energy over broader regions
of f(v). We have seen that collisions can do that(‖), but the typical time–scales are usually quite
long. How can the energy be redistributed before collisions can play a role?
How can we modify f0(v) over an extended region of v for example to create a current, without
using large wave amplitudes? And how to describe the decorrelation of the particle motion in
phase space, e.g. to describe the additive action of different waves?

(§) i.e does not necessarily follow an exponential law, as would result from linearised equations.
(¶) Or equivalent mechanisms that lead to a decorrelation of the trajectories in the phase space.
(‖) The distribution function will relax to a maxwellian, and in this case we have an effective heating.
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To answer these questions we have to introduce the concept of chaos in particle orbits , i.e. an
exponential divergence in phase space of initially close orbits. Note that this is possible also in
deterministic systems (i.e. described by deterministic equations of motion).

(c)

x x

v
(b)

vv

x

(a)

(ω/k)1

(ω/k)2

(ω/k)1

(ω/k)2

(ω/k)1

(ω/k)2

Figure 10.4: Transition to chaos with two waves. From (a) to (b) the width of the resonance ∆vres ∝
√
E is

increased until the two separatrix touch and merge one into the other (c). This corresponds to
possible “chaotic” walks in phase space (see also Appendix H).

10.1.3 Chaos in two waves

The transition to chaos occurs when the two islands of trapped electrons in the phase space begin
to overlap (“Chirikov criterion”, figures 10.4-10.5). We can define a “separation” as

∆
(ω
k

)
≡
∣∣∣(ω
k

)
1

∣∣∣− ∣∣∣(ω
k

)
2

∣∣∣ (10.6)

We introduce the stochasticity parameter

K := 2

{√
A1 +

√
A2

}
(10.7)

where

A1,2 =
eφ1,2

m

[
∆
(ω
k

)]−2

(10.8)

For K = 1 the islands begin to overlap, chaos begins, and fast diffusion(∗∗) in the velocity space
occurs (see Appendix H for an experiment on two wave chaos).
Thus several resonant waves can make particles diffuse over an extended region of the velocity
space even for relatively small wave amplitudes.
This process can help driving current in tokamaks, for example using several cyclotron harmonics.
In some cases it can also lead to unwanted effects, like in the case of lower–hybrid (LH) current
drive. Antennas exciting LH waves from the plasma edge inject a discrete spectrum of k‖’s,
containing spurious components at high k‖ that can resonate with thermal electrons at the plasma
edge(††). Due to resonance overlap, thermal electrons with energies of a few tens of eV can diffuse
in velocity space up to energies of several keV (figure 10.5), forming a beam that can damage the
vessel or other components installed close to the plasma edge like tiles or antennas.

(∗∗) Much faster than collisional.
(††) As vres = ω/k, for high k’s the resonant velocity moves toward vth,e.
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n = 0

n = 1

n = 2

E [eV]

E [V/m]10 20 30 40

210

10 3

10 4

Figure 10.5: Resonance overlap diagram (Chirikov) for n = 0, 1, ... components of an injected wave, as a function
of the amplitude of the resulting wave (note that this is a generalisation of the effect shown in
figure 10.4). At high amplitudes the overlap region spans energies from ∼ 10 eV up to ∼ 1 keV, i.e.
thermal electrons can be accelerated to very high energies.

The use of the so–called quasi–linear theory is usually justified for this kind of problems. The
quasi–linear theory was developed to account for the changes in f0(v) due to wave–particle inter-
action, yet assuming that the wave dynamics show “linear” properties (e.g. ∂

∂t
|E|2 = 2γ|E|2).

In addition to the analysis of the saturation mechanisms for instabilities, quasi–linear theory is
used to calculate (non–inductive) current drive in tokamaks and seems to work fairly well.

10.2 Nonlinear wave dynamics

In the previous discussion we neglected the fact that the particles dynamics in the real space will
also change, influencing the wave-particle interaction itself and the wave dynamics.
What happens if we now do consider these effects?

10.2.1 Wave steepening

Consider the example of an ion–acoustic wave, that we already characterised using both fluid
and kinetic models. In one dimension (figure 10.6) we can describe it by its potential Φ(x, t) ∝
sin(kx− ωt), with

Ti = 0, Te 6= 0; vφ =
ω

k
= cs ⇒M =

vφ
cs

= 1; ne,i ≈
eΦ

Te
(10.9)

where M is the Mach number.
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x

+
F = eE

E = -∇Φ
F ∝ sin(kx − ωt) 

Figure 10.6: Unperturbed potential and force acting on particles (ions)

In linear Landau theory we considered the change in velocity of resonating particles, accelerated at
the positive phase (for ions) and decelerated for a negative phase. We explained qualitatively the
Landau damping from the argument that the particles accelerated by the wave, if they are a little
slower (faster) than the wave, would stay in the resonance for a longer (shorter) time (figure 10.6).
With reference to figure 10.6, the ions at the top of the potential curve have larger velocity in the
direction x, i.e. the direction of vφ, with respect to the ions located in the well. This is because
they have been accelerated as the wave was passing by.
In a more complete (nonlinear) theory we should consider not only the change in velocity, but also
the possible displacement due to large amplitude waves.
From figure 10.7 the ions at the top are accelerated to the right, those at the bottom to the left.
As the density is proportional to Φ, the potential will also be distorted: the wave steepens, i.e.
E = −∇Φ increases and there is a net flow of mass in the direction of propagation. As the wave
velocity increases to M > 1, the wave becomes a “shock wave”.

n ∝ Φ
+

+

x

Figure 10.7: Ion density behaviour under the effects of a high amplitude ion-acoustic wave. Remember that
ni ∝ Φ.
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10.2.2 Solitons

In the presence of dispersion, the process of steepening can be limited and a “soliton” is generated.
We call soliton a pulse that propagates practically without dissipation.
A soliton is described by the Korteveg-de Vries (KdV) equation, namely

∂v

∂t
+ αv

∂v

∂x
+ β

∂3v

∂x3
= 0 (10.10)

The term ∂3/∂x3 results from the dispersion and is the one that limits the steepening. In fact, if
this term was zero, then

∂v

∂t
+ αv

∂v

∂x
= 0 (10.11)

and the result would be a continuous wave steepening due to convection.
For plasmas, the KdV equation can be written in the form:

∂φ

∂t
+ φ

∂φ

∂x
+

1

2

∂3φ

∂x3
= 0 (10.12)

where φ is the electrostatic potential.

d → 0λ

d

Figure 10.8: Wave propagation properties can be strongly affected by “boundary conditions”, as in the case of a
tsunami.

Dissipation can prevent an extreme steepening of the wave, but is not always sufficient, for example
when the boundary conditions are changed.
Consider the analogy with large amplitude ocean waves (tsunami), described by similar equations
(figure 10.8). Tsunami are characterised by very long wavelengths, λ & 100 km, and large veloci-
ties(‡‡), vφ ∼ 800 km/h. In the ocean it propagates almost as a soliton, but as it approaches the
shore d→ 0⇒ vφ → 0, the wavelength decreases and the amplitude must grow. This corresponds
to a resonance, N = kc

ω
→∞. Thus the wave steepens as it gets closer to the shore, and eventually

breaks.
Note that soliton–like waves can also have smaller amplitudes than a tsunami. They can be
observed in oceans (figure 10.9) as well as in rivers.

(‡‡) Note that, as λ � d, where d is the depth of the ocean, even in the middle of the ocean the tsunami is a
“shallow water” wave, with vφ '

√
gd.

Note that a tsunami cannot be described by a linear plane wave, because no linear wave can travel for so
long without dispersion (8000 km from Sumatra to the South of Africa, in the case of tsunami in December
2004).
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Figure 10.9: Examples of solitons approaching the shore.
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Appendix A Debye length - formal derivation

Here we want to derive an expression for the electrostatic potential, Φ, as a function of the other
parameters. Our assumptions are:

• Cold ions: Ti = 0 → ni = n0

• Electrons described by a Maxwell–Boltzmann distribution (i.e. the electron population is at
the thermal equilibrium)

f(v) = A exp
{
−energy

T

}
= A exp

{
−

1
2
mv2 − eφ

T

}
(A.1)

−→ ne = ne0 exp

{
eφ

T

}
(A.2)

• Small perturbations

ne ' ne0 or
eφ

T
� 1 (A.3)

• Spherical symmetry

φ ≡ φ(r), ne ≡ ne(r) (A.4)

We start from Poisson’s equation for the potential:

∇2Φ(r) = − ρ

ε0

(A.5)

Now let’s put a test particle with charge qtest inside the plasma, at r = 0. We can split the space
charge ρ in two contributions. The first contribution ρplasma represents the charge due to the
plasma, and the second contribution comes from the test particle:

ρ = ρplasma + qtest ≡ e(ni − ne) + qtestδ(r) (A.6)

Now remember the hypothesis of small perturbations: e
eΦ
T ≈ 1 + eΦ

T
+ ..., then:

ρ ≈ −en0
eΦ

T
+ qtestδ(r) (A.7)

Due to the hypothesis of spherical symmetry

∇2Φ(r)→ 1

r

d2[rΦ(r)]

dr2
(A.8)

and eq.(A.5) can be written as

1

r

d2[rΦ(r)]

dr2
= +

e2n0

ε0

Φ(r)

T
− qtest

ε0

δ(r) (A.9)

The test charge qtestδ(r) represents a source term. We can solve eq.(A.9) by standard methods,
looking first for a solution of the associated homogeneous equation and then taking into account
the source term as a condition for a particular solution.

Plasma Physics II Ambrogio FASOLI, CRPP/EPFL, 2010



A Debye length - formal derivation page 125

The homogeneous equation can be cast in the form

d2[rΦ(r)]

dr2
= +

e2n0

ε0

rΦ(r)

T
(A.10)

and with the substitution F (r) = rΦ(r) we obtain

F (r) = A exp

(
− r

λD

)
→ Φ(r) =

A

r
exp

(
− r

λD

)
(A.11)

where we have introduced the Debye length, λD:

λD =

√
ε0T

n0e2
(A.12)

Now let’s go back to eq.(A.5). Consider a sphere (radius r, surface Σ, volume V ) centred on our
test particle. In the limit r → 0 there will be no other particles inside the sphere, and we can use
the Gauss Theorem to relate Φ and qtest and obtain the value of A:

qtest
ε0

=

∫
V

ρdV =

∫
V

∇ · EdV =

∫
Σ

E · n̂ dΣ (A.13)

where n̂ is the unitary vector normal to the surface Σ.
The electric field E = −∇Φ(r) has only a radial component (along n̂). In the approximation
r → 0 is

E(r) ≈ A

r2
(A.14)

and after a few calculations, for(§§) r = a:

qtest
ε0

=

∫
Σ

E(r)dΣ = 4πa2Ea = 4π A (A.15)

i.e. A = qtest
4πε0

and for qtest = e (ion)

φ(r) =
e

4πε0

1

r
exp

{
− r

λD

}
(A.16)

(§§) For physical reasons r has a minimum value a, equal to the particle radius.
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Appendix B Energy and momentum transfer: formal deriva-

tion

Let’s see in detail the derivation of the energy and momentum transfer rate for one collision,
eqs.(3.19) and (3.32), respectively.

Example: heavy ion

heavy ione−
+

y

x

No energy is exchanged 
but nevertheless Δp  /p  = 100 %

x

Time scales for energy
or momentum exchanges
can be very different!

x

Energy transfer rate

As m2 � m1, we can assume the ion at rest, v2 = 0. After the collision, from eq.(3.6), the velocity
of the electron will have components :

v′1 =

(
u+

m2

m1 +m2

v cos θ,
m2

m1 +m2

v sin θ

)
(B.1)

As v2 = 0, the relative velocity is v = v1 and the velocity of center of mass is u = m1

m1+m2
v, and

we have:

v′1 =

[
(m1 +m2 cos θ)

v

m1 +m2

,
m2

m1 +m2

v sin θ

]
(B.2)

Loss in kinetic energy

∆Ek = Ek − E ′k =
1

2
m1

{
v2 −

[
(m1 +m2 cos θ)v

m1 +m2

]2

−
[
m2v sin θ

m1 +m2

]2
}

=

=
1

2
m1v

2

[
1− m2

1 +m2
2 cos2 θ + 2m1m2 cos θ +m2

2 sin2 θ

(m1 +m2)2

]
=

=
1

2
m1v

2

[
1− m2

1 +m2
2 + 2m1m2 cos θ

(m1 +m2)2

]
=
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In the limit of small angles, we can expand cos θ up to the second order: cos θ ' 1− θ2

2
,

=
1

2
m1v

2

[
1− m2

1 +m2
2 + 2m1m2 −m1m2θ

2

(m1 +m2)2

]
=

=
1

2
m1v

2

[
m1m2

(m1 +m2)2
θ2

]
As tan θ

2
= b90

b
, we can write θ ' 2 b90

b
in the limit of small angles. This finally gives the energy

loss for a single collision, in the limit of small angles, eq.(3.19):

∆Ek =
1

2
m1v

2 m1m2

(m1 +m2)2

(
2
b90

b

)2

Momentum transfer rate

Let be x̂ the direction of the incoming particle, then the variation of momentum along x̂ will be
equal to:

∆px = m1(v1 − v′1x) = m1v1

[
1−

(
m1

m1 +m2

+
m2

m1 +m2

cos θ

)]
=

= px

(
m2

m1 +m2

− m2

m1 +m2

cos θ

)
=

= px
m2

m1 +m2

(1− cos θ)

In the limit of small angles, cos θ ' 1− θ2

2
:

∆pk '
m2

m1 +m2

θ2

2
px

and, reminding that

∆Ek
Ek
' m1m2

(m1 +m2)2
θ2

we find eq.(3.32)

∆pk
pk

=
1

2

m2

m1 +m2

θ2 =
1

2

m2

m1 +m2

∆Ek
Ek

(m1 +m2)2

m1m2

=

=
1

2

m1 +m2

m1

∆Ek
Ek
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Appendix C Examples of techniques to measure distribu-

tion functions

Electron distribution function

fe(v) can be extracted from:

• Probe measurements (Langmuir probes, see figures C.1 and C.2).
A Langmuir probe consists of one or more electrodes, inserted into a plasma, with a constant
or time-varying electric potential between the various electrodes or between them and the
surrounding vessel.
The beginning of Langmuir probe theory is the I − V characteristic of the Debye sheath,
that is, the current density flowing to a surface in a plasma as a function of the voltage drop
across the sheath. As the potential drop in the Debye sheath is reduced, the more energetic
electrons are able to overcome the potential barrier of the electrostatic sheath. By varying
the potential, the electron distribution function may be reconstructed.

• Scattering of laser light from free electrons (Thomson scattering).

Figure C.1: Measured Current–Voltage characteristic measured by a Langmuir probe in a low-density, low-
temperature plasma. The main parameters are found by fitting the data with a known function.
In the region where the current changes its sign fe(v) ∝ (dIpr/dVpr)

−1
.

Ion distribution function

fi(v) can be obtained from:

• Collective Thomson scattering,

• Laser induced fluorescence (LIF) via completely ionised ions, see figure C.3.
A tunable laser pumps a bound electron from quantum level E1 to a higher level E2. The
excited electron then spontaneously decays to a lower level E3, emitting a photon. By
using a very narrow band dye laser, the line width of the exciting laser line is substantially
narrower than the thermal Doppler width of the plasma ions so that scanning the dye laser
wavelength map out the ion velocity distribution f(x,v,t), ωobserved = ωlaser − klaservion.
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sumptions make sense at high pressures where the electron
mean-free path is short. However, they are not justified in
low-pressure, anisotropic discharges such as the sputtering
magnetron.

Once the reduced distribution functiong(nu) has been
determined, moments can be computed:6 including the elec-
tron densityne , the azimuthal drift velocitŷ nu&, and the
average electron energy, 1/2m^nu

2&. The azimuthal current
density is Ju5ene^nu&. When the distribution function is
non-Maxwellian, as will be the case here, the average ran-
dom energy can be related to an ‘‘effective temperature’’ by
Teff5m^(nu2^nu&)

2&/k.

III. RESULTS

A copper cathode was used with Ar gas at a pressure of
1.0 Pa. The discharge voltage was2400 V dc, and the dis-
charge current was 51 mA, giving a current density at the
cathode of'46 A/m2. Measurements were made in the azi-

muthal direction at a radiusr 517 mm ~above the deepest
part of the etch track! and for six heights above the cathode
z515, 20, 25, 30, 35, and 40 mm, as shown in Fig. 1~a!.
Unfortunately, it was not possible to make measurements
nearer the cathode, as the presence of the probe caused a
large decrease in the discharge current.~This observation
agrees qualitatively with Monte Carlo simulations2 showing
that the trap region extends'10 mm above the cathode.!
Note in Fig. 1 thatr 517 mm, z515 mm is almost on the
magnetic ‘‘separatrix,’’ i.e., forz&15 mm, magnetic-field
lines begin and end on the cathode, giving a rough indication
of the trap region, while forz*15 mm, magnetic-field lines
connect the cathode to the anode, allowing energetic elec-
trons to escape axially.6

The measured electron velocity distribution functions
g(nu) are shown in Fig. 2, where positive velocities are in
theE3B drift direction and the vertical axis is logarithmic to
bring out detail in the tails. A shifted-Maxwellian curve is
used to interpolate the distribution function6 aroundnu50.

The most striking feature of the distribution function near-
est the cathode (z515 mm) is a clear drift in theE3B di-
rection. Here, the distribution function consists of a warm
Maxwellian (T'1.9 eV) shifted in the positive direction by
theE3B drift. The distribution function is asymmetric about

FIG. 1. ~a! Magnetic-field configuration in ther –z plane and~b! z depen-
dence of magnetic-field componentsBr andBz for r 517 mm. The magne-
tron is a cylindrically symmetric, planar device with the cathode atz50.
Crosses in~a! mark the locations where the azimuthal electron distribution
function is measured.

FIG. 2. Reduced electron velocity distribution functionsg(nu) at r
517 mm for heightsz515, 20, 25, 30, 35, and 40 mm above the cathode.
The abscissa is logarithmic. Each distribution function begins at 106 s m24

at the position indicated on theg axis. An E3B drift is clearly seen atz
515 mm.

2174 Sheridan, Goeckner, and Goree: Electron velocity distribution functions 2174

J. Vac. Sci. Technol. A, Vol. 16, No. 4, Jul/Aug 1998

Figure C.2: Reduced electron velocity distribution functions g(νθ) at r = 17 mm for heights z = 15, 20, 25, 30,
35 and 40 mm above the cathode. The abscissa is logarithmic. Each distribution function begins at
106 s m−4 at the position indicated on the g axis. An E × B drift is clearly seen at z = 15 mm.
Courtesy of T. E. Sheridan et al., J. Vac. Sci. Technol. A 16(4), Jul/Aug 1998.

(a) (b)

Figure C.3: (a) Principle of Laser Induced Fluorescence (LIF) measurement.
(b) Example of f(v⊥), f(v‖) measured by LIF on a ’Q-machine’. v‖ and v⊥ are the velocity
components parallel and perpendicular to the magnetic field B. Barium plasma (singly ionised).
Ti,⊥ ' 2Ti,‖ ' 0.23 eV. Courtesy of A. Fasoli, PhD thesis, 1993.
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Appendix D Experimental measurements of ”classical” dif-

fusion by optical tagging

We are considering a cylindrical vacuum vessel with a magnetic field along its axis. A Barium
plasma is produced. Such kind of plasmas are very quiescent, i.e. without significant levels of
fluctuations and turbulence.

Figure D.1: Experimental set-up for cross-field transport studies

Particles in a certain region of the plasma are tagged by exciting them with a laser from the
ground–state A to state B from where some decay to a metastable Zeeman sub-level C. i.e. for
those particles, the A→ B transition is no longer resonant with the laser frequency. Thus they can
be identified again (perhaps in another plasma region) by a ‘search’ laser, to which they appear
as a missing of fluorescence response.
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(a) (b)

Figure D.2: (a) Scheme of barium II spin state tagging.
(b) tag signal amplitude as a function of the search laser frequency, showing ”dark” and ”bright”
characteristics. The background LIF signal from the two σ lines is also displayed (continuous line)

It can be shown (see A. Fasoli, EPFL thesis #1162, 1993) that the perpendicular diffusion coeffi-
cient is proportional to the full-width at half maximum of the tag signal:

D⊥ '
[

FWHM2

2.77
− a2 − b2

]
vD

4∆z

where ∆z is the distance along the magnetic field between the optical tagging position and the
search one. So as ∆z increases, the FWHM should increase too.
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Figure D.3: Experimental verification of ”classical” diffusion for a cylindrical non–turbulent plasma. Optical
tagging was used to measure particle transport. Here, a radial scan of the tag signal expressed in
arbitrary units is shown (v1/v⊥th ' 0; B ' 0.15 T). Theoretical and experimental curves for two
values of the tag–search distance are shown on the same scale.

The experimental results of FWHM2 as a function of the position ∆z can be fitted with a straight
line. The slope is directly proportional to the perpendicular diffusion coefficient.
By changing the magnetic field, one can find if the ”classical” prediction D⊥ ∝ B−2 is satisfied.

Figure D.4: Left: square of the tag radial profile FWHM as a function of the tag-search position ∆z. A least
square fit for ∆z < 30 cm is also shown. Right: B-field scaling of the measured perpendicular
diffusion coefficient. The shaded region corresponds to the values calculated from D⊥ = 1/2ρ2

i νii.
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Appendix E How is an Interferogram Measured?

In an experiment as shown in figure E.1, a wave at frequency ω is excited by an antenna, for
example by applying an oscillating voltage V0 cosωt to a grid immersed into the plasma. We
can then measure the effects of the launched wave at the generic position x by means of a probe
(electrical or optical, e.g. LIF). The measured voltage will be of the form V1(x) cos(ωt− kx+φ0).
‘Mixing’ the two signals we get

V0V1(x) cos(ωt) cos(ωt− kx+ φ0)

=
V0V1(x)

2

[
cos(2ωt − kx + φ0) + cos(kx − φ0)

]
(E.1)

Using a low–pass filter to eliminate the component oscillating at 2ω and supposing that the wave
is exponentially damped in the plasma

V1(x) = V0e
−kix (E.2)

the signal becomes

V 2
0

2
e−kix cos(kx− φ0) =

V 2
0

2
<
{
ei(k̃x−φ0)

}
=
V 2

0

2
<
{
eik̃x)

}
+ const. (E.3)

where k̃ = kr + iki is the complex wave vector. The imaginary and real parts give the damping
rate and the wavelength of the wave. Varying x, both values can be measured for a fixed frequency
ω imposed by the antenna.

x

Low pass filter

IF

Mixer

LO RF

V0 cos(ωt)

The observation point is scanned continuously

V1(x) cos(ωt − kx + q0)

Probe (electrical or optical)

grid (to launch the wave) PLASMA

V0 cos(ωt)

(a) (b)

Figure E.1: (a) Interferometry experiment.
(b) Experimental evidence of Landau damping: The damping rate is in agreement with the Landau
theory (solid line). J. H. Malmberg and C. B. Wharton, Phys. Rev. Lett. 17 (1966) 175.
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Appendix F Example of nonlinear saturation of particle–

driven instabilities
am

pl
it

ud
e

theory
experiment

normalised time
Figure F.1: Non-linear saturation of fast-particle driven Alfvén wave in a tokamak [K.L. Wong et al., Phys.

Plasmas 4 (1997) 393-404].
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Figure F.2: “Bursting” saturation of low frequency instabilities driven by Neutral Beam Injection. Fishbone
instability: (a) soft X-ray emission; (b) poloidal magnetic field fluctuations; (c-d) expanded trace of
these fluctuations [K. McGuire et al., Phys. Rev. Lett. 50 (1983) 891].
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Appendix G Trapping effect

parallel
beam
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beam

perpendicular
beam

hot
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to phasing
circuit and

generator
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perpendicular
beam carriage

v

Figure G.1: Sketch of the Linear Magnetised Plasma (LMP) device at CRPP/EPFL, Lausanne. A quiescent
drifting Barium plasma is created by a hot–plate continuous discharge and diagnosed with Laser
Induced Fluorescence (LIF) and Optical Tagging techniques. Note the four rings surrounding the
plasma column, representing an antenna for the excitation of ion–acoustic waves with tunable k‖.
Te ∼ Ti ∼ 0.2 eV, B0 ∼ 0.3 T, ne ∼ 1010 cm−3.

Figure G.2: Two waves trapping effect. Example of time resolved parallel ion distributions before (left) and after
(right) stochastic heating. On the left the unperturbed distribution is also represented (dashed line)
before the injection of two waves with phase velocities vφ,1 and vφ,2. Note the formation of a plateau
around the resonant velocities.
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Appendix H Stochastic heating

Figure H.1: Sketch of the evolution of the orbits in the phase space as a function of the stochasticity parameter
K. Particles that were originally localised on the separatrix for K < 1 diffuse in the phase space
when the two islands merge (K > 1).
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Figure H.2: Left: Parallel ion distribution function f(v) for different amplitudes of the excited waves. Note
the heating of the ion population for K > 1, evident from the broadening of f(v). Right: Parallel
temperature for different amplitudes. The shaded region correspond to K ' 1: two islands in the
phase space can overlap, leading to a “stochastic heating” of the population.

Figure H.3: For K > 1 non–linear heating is observed. It occurs on a time–scale ten times faster than the
collisional one. The parameter Dvv is the diffusion coefficient in the phase space: ∂f

∂t = 1
2
∂
∂v Dvv

∂f
∂v .
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Appendix I Test-particle transport

TAG
T(x,v)

SEARCH
S(x,v)

optical pumping 
and radiactive 
decay = more 
ions in state ‘C’

less signal 
when and
where ‘tagged’
particle arrives

Figure I.1: Setup for the experimental characterisation of particle transport in the phase space (the measurements
were made on the LMP device). A narrow–band laser injects a “tag beam” at x ∈ (xT , xT + ∆x),
exciting a selected class of particles with v ∈ (v0, v0 +∆v). This defines a volume ∆x∆v in the phase
space with a width Γ0. A second laser is then used as “search beam” at different positions xS , and
measures the broadening of Γ0.
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Figure I.2: A search beam at xS measures the evolution of the width Γ0 of the initially selected volume.

Figure I.3: Width Γ and number of particles in the observed phase space volume as a function of the distance
from the exciter laser. With classical radial transport one should observe a dependence Γ2 ∼ Dt,
while above the wave–particle stochastic threshold (K > 1) is Γ2 ∼ exp (αt).
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α–particles, 17
b90, 15
bmax, 18
bmin, 18

adiabatic index, 50
Alfvén speed, 45
Ambipolar field, 33
Analytical continuation, 86
Aurora, 6

Ballistic modes, 91
Banana orbit, 38
Bessel function, 108
Bohr radius, 8
Boltzmann equation, 68
Bounce frequency, 115
Bounce time, 115
Bursting saturation, 135
Bursts, 116

Cauchy formula, 88
Chaos in particle orbits, 117
Characteristic length for the density gradient,

64
Chirikov criterion, 117
Collective behavior, 2
Collective Thomson scattering, 128
Collision frequency

average, 21
effective, for energy loss, 19
electron, 24
ion, 24

Collisionality, 17
Collisions, 13

Coulomb, 12
multiple, 16

Collisions:elastic, 13
Collisions:inelastic, 13
Conductivity tensor, 48
Conservation, 70
Constitutive relation, 48
Continuity equation, 75
Convective derivative, 41
Corona, 12
Coronal equilibrium, 6
Coulomb

force, 14
logarithm, 18
potential, 14

Coulomb force, 13
Cross–section, 7

fusion, 25
Rutherford differential, 16

Current drive, 115

Damping, 84
deBroglie wavelength, 8
Debye

length, 3, 124
sheath, 128
shielding, 2
sphere, 3

Deflection anlge, 15
density gradient scale length, 65
Deterministic chaos, 116
Dielectric tensor, 48
Diffusion, 30

coefficient, 31
equation, 32
of B-fields, 41
perpendicular, 34

Diffusion coefficient
ambipolar, 33

Dispersion function, 79
Dispersion relation, 45, 49, 81
Distribution function

Maxwellian, 21
moments of, 72
plateau in the, 115

distribution function, 20, 66
Doppler shift, 108
Dreicer electric field, 29
Dynamo effect, 43

EBW, 112
Einstein relation, 32
Electron beam, 29
Electrostatic approximation, 77
Energy

conservation, 70
loss, 18
loss rate, 19, 126
total, 70
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transfer rate, 19, 126
Entropy, 70
Equilibrium

static, 39
thermal, 24
uniform, 39

Equipartition principle, 73

Faraday rotation, 57
Fick law, 32
Fishbone instability, 135
Fishbone–like oscillations, 116
Flux

freezing, 41
particles, 33

Fokker–Planck term, 68
Fourier

transform, 39
Friction force, 26

G.T.E., 10
Galileian transformation, 22
Global thermodynamical equilibrium, 10
Guiding center, 34

Heat conduction, 35
heat flux tensor, 74
Heating

ohmic, 27

identity dyad, 48
Impact parameter, 15
Index of refraction, 49
Instability, 84

saturation, 114
sufficient condition, 103

Interferogram, 133
Interferometry, 133
Ionisation, 6

degree of, 10
impact, 6
radiative, 6
strong, 12
weak, 12

Island, 117
Isotropization, 22

Kinetic effects, 65
Kinetic model, 66, 106
Korteveg-de Vries equation, 120
Krook term, 68

Lagrangian approach, 67
Landau

damping, 96
damping, non–linear, 116
integral, 80
length, 12
rule, 87

Langmuir probe, 128
Laplace transform, 84
Larmor

motion, 25
Laser induced fluorescence, 128
Lawson criterion, 25
LHCD, 117
LIF, 93, 96, 128
Lightning, 9
Linear Magnetised Plasma, 136
Linearisation, 39
Liouville theorem, 67
LMP, 136
Lower hybrid current drive (LHCD), 60

Mach number, 118
Magnetic pressure, 46
Magneto-hydrodynamic model, 41
Magnetosphere, 45
Mass

reduced, 14
Method of the characteristics, 106
Method of the unperturbed trajectories, 106
MHD, 41

ideal, 41
resistive, 41
Two–fluid model, 49

Micro–instabilities, 100
Mobility, 32
Mobility tensor, 51
Mode

conversion, 112
extraordinary (XM), 60
ordinary (OM), 60

Modes
ballistic, 91

Momentum
loss rate, 19
total, 70
transfer rate, 19, 127

Nebula, 6
Neon tube, 12
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Non–linear effects, 114
Nonlinear wave dynamics, 118
Normal mode analysis, 39
Norton–Gardner theorem, 100
Nyquist criterion, 101

Ohm’s law, 41
Optical tagging, 130

Particle trapping, 115
Phase mixing, 91
Phase transition, 11
Plane wave analysis, 39
Plasma

Barium, 129
collisionless, 70
definition of, 1
dynamic properties, 5
echo, 95
free streaming, 93
frequency, 5
hot magnetized, 106
interstellar, 11
Mercury, 46
monitor, 9
parameter, 3
production, 6
resitivity, 26
waves, 39

Pole, 85
Pressure ration β, 46
Pressure tensor, 73
Principal value, 80
Problem

boundary value, 63
initial condition, 62

production, 6

Q–machine, 129
Quasi–linear theory, 118
Quasineutrality, 1

Random walk, 30
Rates, 9
Ray tracing, 63
Recombination, 6

charge–exchange, 6
dissociative, 6
radiative, 6
three-body, 6

Relaxation processes, 19
Resistivity, 26
Resonance

hybrid, 60
lower hybrid (LH), 60
upper hybrid (UH), 60

Resonance overlap, 117
Reynolds number, 42
rotating vectors, 55
Runaway–regime, 28
Rutherford differential cross–section, 16

Saha equation, 10
Scattering, 17

pitch angle, 19
Solar corona, 12
Solar flare, 42
Solar wind, 42
Solitons, 120
Sound speed, 44
Spark plug, 9
Spin state tagging, 131
Spitzer resistivity, 27
Stability criteria, 100
Stochastic heating, 137
Stochasticity parameter, 117
Streaming instability, 81
Supraconductor, 27
Synchrotron radiation, 29

Theorem of residues, 88
Thermal diffusivity, 35
Thermalisation, 17
Thomson scattering, 128
Time scales

characteristic, 24
Transport, 30

anomalous, 38
classical, 37
energy, 35
neo-classical, 37
particle, 31

Trapped particles, 38
Tsunami, 120

Universal instabilities, 65

Velocity
center–of–mass, 14
diamagnetic drift, 65
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drift, 21
fluid, 41
group, 40
phase, 40
phase space, 67
relative, 14

Vlasov equation, 66, 68
Vlasov–Maxwell system, 78
Vlasov–Poisson system, 85

Wave steepening, 118
Wave–particle interaction, 81
Waves, 39

Absorption, 53
backward, 111
Bernstein, 112
compressional Alfvén, 47
cut–off, 53
cyclotron resonance, 54
drift waves, 64
electron plasma waves, 83
electrostatic, 61, 77
fast, 47
helicon, 59
ideal MHD, 44
inhomogenous plasmas, 63
ion acoustic, 49
Langmuir, 49, 83
longitudinal, 49
magneto–sonic, 46, 47
non–compressional, 45
reflection, 53
resonance, 53
right–handed, 56
shear Alfvén, 44
shock wave, 119
slow, 47
sound, 46
transverse, 44, 49
wave equation, 48
Whistler, 57

WKB method, 63
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