Homework 1

Traitement Quantique de l'Information

In this exercise we illustrate a toy model description of the "orbital" state of a photon and its manipulation by mirrors. We suppose that a photon can travel only along the "vertical" and "horizontal" directions and represent its general state by a quantum bit

$$
\alpha|H\rangle+\beta|V\rangle=\binom{\alpha}{\beta}
$$

where $|H\rangle=\binom{1}{0}$ and $|V\rangle=\binom{0}{1}$. Recall that $\alpha, \beta \in \mathbb{C}$ and $\alpha^{*} \alpha+\beta^{*} \beta=1$.

$$
\longrightarrow|H\rangle \quad \uparrow
$$

Figure 1: Possible preparation directions and states

1) Write down the "Bra" in Dirac and usual vector notations associated to the "Ket" $\alpha|H\rangle+$ $\beta|V\rangle$.
2) Compute the scalar product (or Bracket) for the two kets $\alpha|H\rangle+\beta|V\rangle$ and $\gamma|H\rangle+\delta|V\rangle$ in Dirac and vector notations. In particular, check $\langle H \mid V\rangle=\langle V \mid H\rangle=0$ and $\langle H \mid H\rangle=$ $\langle V \mid V\rangle=1$.
3) A mirror like Figure 2 makes the transitions $|H\rangle \rightarrow i|V\rangle$ and $|V\rangle \rightarrow i|H\rangle$. In quantum

Figure 2: Mirror operations (perfect reflection)
physics the mirror operation is described by a matrix $R=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$. Verify $R^{\dagger} R=R R^{\dagger}=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ where $R^{\dagger}=R^{\top, *}$ (transpose and complex conjugate).
A photon in the state $\alpha|H\rangle+\beta|V\rangle$ is incident on the mirror and is reflected. Compute the output state $R(\alpha|H\rangle+\beta|V\rangle)$ in Dirac and vector notations. Make a picture of the photon and mirror.
4) A semi-transparent mirror is described by a matrix $S=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & i \\ i & 1\end{array}\right)$. Verify $S^{\dagger} S=S S^{\dagger}=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Compute $S|H\rangle, S|V\rangle$ and $S(\alpha|H\rangle+\beta|V\rangle)$. Make pictures analogous to Figure 2 to get an intuition of these operations.
5) Consider the following experiment where D is a photo-detector.

Here we will assume α and β are real. Compute the probability of detecting a photon in D.
6) Now we consider the following set-up which constitutes the Mach-Zehnder interferometer. It is constituted of two semi-transparent mirrors, two perfectly reflecting mirrors and two photodectectors. The "paths" of the photon are depicted on the figure.

The incoming photon has the state $|H\rangle$. Compute the final state just after the second semi-transparent mirror before the photodetectors. Then compute the probability of detecting the photon in the photodetectors D_{1} and D_{2}. What would you expect to find if the photons were "classical balls"?

