
Advanced Probability and Applications EPFL - Spring Semester 2021-2022

Final exam: Solutions

Exercise 1. Quiz. (20 points)
Answer each yes/no question below (2 pts) and provide a short justification for your answer (2 pts).

a) Does there exist a sequence of independent random variables (Xn, n ≥ 1) such that the sequence
of σ-fields (Fn, n ≥ 1) defined as

Fn = σ(X1 + . . .+Xn), n ≥ 1

is a filtration, and moreover, Fn 6= Fn+1 for every n ≥ 1 ? If yes, exhibit such a sequence of random
variables; if no, explain why such a sequence cannot exist.

Answer: Yes. Consider for example Xn independent with P({Xn = 2−n}) = P({Xn = 0}) = 1
2 .

b) Let X, Z be two independent random variables such that P({X = +1}) = P({X = +2}) = 1
2

and P({Z = −1}) = P({Z = 0}) = 1
2 . Let also Y = X · Z. Does it hold that t 7→ FY (t) has four

jumps (i.e., four values of t where it is not continuous) ? Justify your answer.

Answer: No. FY has actually three jumps in t = −2,−1, 0 (of sizes 1
4 , 1

4 , 1
2 , respectively).

c) Let X1, X2 be two random variables such that X1 ∼ N (0, σ2
1), X2 ∼ N (0, σ2

2) and

E(exp(it1X1 + it2X2)) = exp

(
−(σ1 t1 + σ2 t2)2

2

)
, ∀t1, t2 ∈ R

Does it hold that X1 and X2 are independent ? Justify your answer.

Answer: No. In this case, it holds that X2 = σ2
σ1
X1. Independence would hold if the following

inequality were true:

E(exp(it1X1 + it2X2)) = exp

(
−(σ1 t1)2 + (σ2 t2)2

2

)
= φX1(t1) · φX2(t2)

d) Let X1, X2 be two independent random variables taking values in {−1,+1} and such that
P({X1 = +1}) = P({X1 = −1}) = 1

2 . Does it hold that

E( |X1 +X2| | X2) = |X2| ?

Justify your answer.

Answer: Yes: E( |X1 + X2| | X2) = ϕ(X2), where ϕ(y) = E(|X1 + y|) = 1 = |y| for both y = +1
and y = −1.

e) Do there exist real numbers p, q ∈ [0, 1] and random variables X1, X2, X3 taking values in
{−1,+1} satisfying the following properties ?

• P({X1 = x1, X2 = x2, X3 = x3}) =

{
p if x1 = x2 = x3

q otherwise
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• E(Xj Xk) = −1
2 for every j, k ∈ {1, 2, 3} with j < k.

If yes, exhibit such random variables X1, X2, X3, along with the corresponding values of p and q;
if no, explain why they cannot exist.

Answer: No. Here is why: on the one hand, we must have 2p + 6q = 1, so p + 3q = 1
2 ; on the

other hand, we must also have

−1

2
= E(X1X2) = P({X1 = X2})− P({X1 6= X2}) = 2p+ 2q − 4q = 2(p− q) so p− q = −1

4

Substracting the two equations, we obtain 4q = 1
2 + 1

4 = 3
4 , so q = 3

16 , but then p = q − 1
4 = − 1

16 ,
which is impossible.

Note: There do exist identically distributed random variables X1, X2, X3 such that E(Xj Xk) = −1
2

for every j, k ∈ {1, 2, 3} with j < k, but these must take values in a larger set than {−1,+1}.

Exercise 2. (15 points)

Note: For this exercise, the following facts might help:

• For s, t ∈ R, cosh(s) = exp(s)+exp(−s)
2 and cos(t) = exp(it)+exp(−it)

2

• For x ∈ R and n ≥ 1, (1 + x
n)n ≤ exp(x); also, limn→∞(1 + x

n)n = exp(x)

For a given value of n ≥ 1, let (X
(n)
1 , . . . , X

(n)
n ) be i.i.d. random variables such that

P({X(n)
1 = +1}) = P({X(n)

1 = −1}) =
1

2n
and P({X(n)

1 = 0}) = 1− 1

n

Let also Sn = X
(n)
1 + . . .+X

(n)
n .

a) Compute E(Sn) and Var(Sn) for n ≥ 1.

Answer: E(Sn) = 0 and Var(Sn) = n · 1
n = 1.

b) Using Chebyshev’s inequality with ϕ(x) = exp(sx), s > 0, show that for every c > 0

P({|Sn| ≥ c log(n) infinitely often}) = 0

Hint: There is no need here to optimize over s your upper bound on the probability: for each value
of c > 0, you just need to find an appropriate value of s > 0 that allows to conclude.

Answer: Since Sn is symmetrically distributed, it is enough to show P({Sn ≥ c log(n) i.o.}) = 0.
Chebyshev’s inequality gives

P({Sn ≥ c log(n)}) ≤ E(exp(sSn))

ncs

and by the hint at the beginning of the exercise

E(exp(sSn)) =

(
1 +

cosh(s)− 1

n

)n
≤ exp(cosh(s)− 1)
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so

P({Sn ≥ c log(n)}) ≤ exp(cosh(s)− 1)

ncs

Choosing then s = 2/c ensures that P({Sn ≥ c log(n)}) = O(1/n2). Since this is summable over n,
the Borel-Cantelli lemma allows to conclude.

c) Show that the sequence of random variables (Sn, n ≥ 1) converges in distribution.

Hint: You may use here the fact (not seen in class) that if a sequence of characteristic functions
converges to a limit which is a continuous function, then the corresponding sequence of random
variables converges in distribution (no need to compute the limiting distribution).

Answer: By the hint, we have

E(exp(itSn)) =

(
1 +

cos(t)− 1

n

)n
→

n→∞
exp(cos(t)− 1).

which is a continuous function. This allows us to conclude that the sequence (Sn, n ≥ 1) converges
in distribution.

d) Can you tell whether the limiting distribution in part c) is discrete or continuous ? Justify your
answer.

Hint: Again, there is no need to compute explicitly the limiting distribution here.

Answer: Sn can only take integer values for all values of n, so the limiting distribution must be
discrete. Another possible argument is that the limiting characteristic function is periodic (and
therefore does not go to zero as t goes to ±∞).

Exercise 3. (17 points) Let N ≥ 1 be a fixed integer and Z = (Z1, . . . , ZN ) be a random vector
composed of i.i.d. N (0, 1) random variables. Let also

‖Z‖ =

√√√√ N∑
n=1

Z2
n, Yn =

Zn
‖Z‖

, for 1 ≤ n ≤ N

Hint: For this exercise, you may use the rather remarkable fact that conditioned on ‖Z‖, the vector
(Z1, . . . , ZN ) is uniformly distributed on the N -dimensional sphere of radius ‖Z‖. This implies in
particular that for every n, the vector (Z1, . . . ,−Zn, . . . , ZN ) is also uniformly distributed on the
N -dimensional sphere of radius ‖Z‖.

a) Compute E(Yn), Var(Yn) and E(Yn Ym) for 1 ≤ n,m ≤ N with n 6= m.

Answer: By the hint, E(Zn | ‖Z‖) = E(−Zn | ‖Z‖) = 0. Therefore,

E(Yn) = E
(
Zn
‖Z‖

)
= E

(
E
(
Zn
‖Z‖

∣∣∣∣ ‖Z‖)) = E
(
E(Zn | ‖Z‖)
‖Z‖

)
= 0

and similarly, E(Zn Zm | ‖Z‖) = E(−ZnZm | ‖Z‖) = 0, so E(Yn Ym) = 0.
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Consequently, Var(Yn) = E(Y 2
n ). Note that (Y1, . . . , Yn) are identically distributed and

N∑
n=1

E(Y 2
n ) = E

(∑N
n=1 Z

2
n

‖Z‖2

)
= E

(∑N
n=1 Z

2
n∑N

n=1 Z
2
n

)
= 1

so E(Y 2
n ) = 1

N for all n.

Let now M0 = 0, F0 = {∅,Ω}, Mn =
∑n

j=1 Yj , Fn = σ(‖Z‖, Y1, . . . , Yn) for 1 ≤ n ≤ N .

b) Compute E(Mn) and Var(Mn) for 1 ≤ n ≤ N .

Answer: E(Mn) =
∑n

m=1 E(Ym) = 0 and

Var(Mn) = E(M2
n) =

n∑
m=1

E(Y 2
m) +

∑
m6=`

E(Ym Y`) =
n

N

as E(Y 2
n ) = 1

N and E(Ym Y`) = 0.

c) Show that Fn = σ(‖Z‖, Z1, . . . , Zn) for every 1 ≤ n ≤ N .

Answer: (‖Z‖, Z1, . . . , ZN ) 7→ (‖Z‖, Z1
‖Z‖ , . . . ,

ZN
‖Z‖) = (‖Z‖, Y1, . . . , YN ) is a 1-to-1 transformation.

Thus, the statement holds.

d) Show that (Mn, 0 ≤ n ≤ N) is martingale with respect to (Fn, 0 ≤ n ≤ N).

Answer: It is easy to see that Mn is integrable, as it is the sum of bounded random variables, and
Fn-measurable. Moreover,

E(Mn | Fn−1) = Mn−1 + E
(
Zn
‖Z‖

∣∣∣Fn−1

)
= Mn−1 +

E(Zn|Fn−1)

‖Z‖

Again, by the same reasoning as in part a), E(Zn | Fn−1) = E(−Zn | Fn−1) = 0, hence M is a
martingale.

e) Using a theorem seen in the course (not forgetting to check its assumptions), show that

P({|Mn −M0| ≥ nt}) ≤ 2 exp(−nt2/2), for every 1 ≤ n ≤ N and t > 0

Answer: We use Azuma’s inequality. Since |Mn −Mn−1|2 = Z2
n

‖Z‖2 ≤ 1, |Mn −Mn−1| ≤ 1 as well.

Hence, we directly apply Azuma’s inequality to obtain the result.

Exercise 4. (18 points + BONUS 5 points) Let us consider the process (Mn, n ≥ 0) defined
recursively as:

M0 = M1 = 1, Mn+1 =


Mn +Mn−1 with probability 1

2

Mn −Mn−1 with probability 1
2

for n ≥ 1
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a) Show that (Mn, n ≥ 0) is a martingale with respect to its natural filtration (Fn, n ≥ 0).

Answer: First, observe that Mn takes a finite number of values for a given value of n, so it trivially
holds that E(|Mn|) < +∞ for every n ≥ 0. Besides, the martingale property holds trivially between
n = 0 and n = 1, and for n ≥ 1, we have

E(Mn+1 | Fn) =
1

2
(Mn +Mn−1) +

1

2
(Mn −Mn−1) = Mn

b) Does it also hold that E(Mn+1 |Mn) = Mn for every n ≥ 0 ? Justify your answer.

Answer: Yes: By the towering property of conditional expectation and part a), we have

E(Mn+1 |Mn) = E(E(Mn+1 | Fn) |Mn) = E(Mn |Mn) = Mn

c) Compute the distribution of M4.

Hint: It is highly advised to draw carefully the binary tree leading to the possible values of M4.

Answer: P({M4 = +5}) = P({M4 = +3}) = 1
8 and P({M4 = +1}) = P({M4 = −1}) = 3

8 .

d) Compute recursively the sequence of numbers f(n) = E(M2
n), for n ≥ 0. What is this sequence ?

Answer: We find recursively that

E(M2
n+1 | Fn) =

1

2
(Mn +Mn−1)2 +

1

2
(Mn −Mn−1)2 = M2

n +M2
n−1

so taking expectations, we obtain f(n + 1) = f(n) + f(n − 1) for n ≥ 1; this is the Fibonacci
sequence (so the value of f(n) is growing exponentially with n).

e) Are the conditions of the first martingale convergence theorem satisfied ?

Answer: No: By part d), supn≥0 E(M2
n) = +∞.

f) Does there exist a random variable M∞ such that Mn →
n→∞

M∞ almost surely ? Justify your
answer.

Hint: Consider the values that Mn can take when n = 2 (mod 3) and n 6= 2 (mod 3).

Answer: No: If the sequence (Mn, n ≥ 0) were to converge almost surely, then it would hold that
for a given value of ω, Mn(ω) is equal to a fixed value K for large n, as Mn(ω) only takes integer
values. But Mn(ω) oscillates between odd and even values (more precisely, Mn(ω) is even if and
only if n = 2 (mod 3)).

BONUS g) For a fixed value of n ≥ 3, what is the value of maxω∈ΩMn(ω) ? And what is the
value of minω∈ΩMn(ω) ? Justify.

Answer: maxω∈ΩMn(ω) = f(n), which is obtained by always following the path in the “+”
direction and minω∈ΩMn(ω) = −f(n− 3), which is obtained by following the path:

. . . , Mn−3 = f(n− 3), Mn−2 = f(n− 2), Mn−1 = Mn−2 −Mn−3 = f(n− 2)− f(n− 3)

and finally: Mn = Mn−1 −Mn−2 = −f(n− 3)
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