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Figure 1: Example of single-node decision tree

Problem 1. (VC dimension of decision trees with binary features) (15pts)

In this problem, we consider the class Hbtree of decision trees with binary features and binary
labels. We have a set of samples x(1), . . . , x(m), where x(i) ∈ {0, 1}d. A decision tree is a
classifier that returns the binary label y for a sample x after performing a series of tests of
the type ”xi = 0?” for 0 ≤ i < d, which are organized in a binary tree-like manner. Nodes
of this tree correspond to the tests and leaves to the returned label values. Note that it is
allowed to return the same label value from both branches.

1. (5pts) Consider the subclass H1 of trees with a single decision node (see Fig. 1). Show
that

VCdimH1 ≤ ⌊log2(d+ 1)⌋+ 1.

2. (5pts) Show that
VCdimH1 ≥ ⌊log2(d+ 1)⌋+ 1.

3. (5pts) Consider the subclass Hdeg,N of degenerate trees. Now the tree has N decision
nodes but each node except the bottom one has a single child node (see Fig. 2). Prove
that

VCdimHdeg,N ≥ ⌊log2(d−N + 2)⌋+N.

Hint: Start from the case N = 1. What changes when we add another node to the
tree?
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Figure 2: Example of degenerate tree with N = 3 nodes.

Solution:

1. For each feature i, there exist two trivial decision trees (that both return zero or both
return one) and two non-trivial ones (the one that returns 0 if xi = 1 and 1 otherwise
and the one that returns 1 if xi = 1 and 0 otherwise). Therefore, with d features we
can have at most 2d+ 2 distinct labelings. In order to shatter m samples, we need to
obtain all 2m possible labelings, hence we have the bound

2d+ 2 ≥ 2m.

Resolving for m we get the stated upper bound.

2. To prove the lower bound, we need to construct the set of m = ⌊log2(d+1)⌋+1 samples
that is shattered. To do this, take the set of all possible labelings except all-zero and
all-one and for each labeling (y1, . . . , ym) remove its complement from the set. This
leaves 2m−1 − 1 distinct labelings y(i). Now we create the samples x(1), . . . , x(m) s.t.
x
(j)
i = y

(i)
j for 1 ≤ j ≤ m, 1 ≤ i ≤ 2m−1 − 1 = d. It remains to notice that a tree with

node xi = 0? gives either the labeling y(i) or its complement (if we reverse the labels
on branches) and in addition all-one and all-zero labelings if both branches return the
same label, which completes the proof.

3. We need to construct the set of m = ⌊log2(d−N + 2)⌋+N samples on which we get
all 2m possible labels. We start from the case of one bottom node, with d = 2m−1 − 1

features for m samples. Now assume we get an extra feature xd+1 and an extra sample
s.t. x

(m+1)
d+1 = 1 and x

(m+1)
i = 0 for i ̸= d + 1 (x(i)

d+1 = 0 for i < m + 1). We create
a parent node that contains the existing node and our new sample as children and
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the splitting rule is the new feature. The new splitting rule allows to label x(m+1)

independently of other x(i), so we get all possible labelings on m + 1 samples. This
procedure can be performed N − 1 times since we have N decision nodes in the tree.
Therefore, for m samples we have d = 2m−1−(N−1) − 1 + (N − 1) = 2m−N + N − 2

features that generate all 2m possible labelings.
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Problem 2. A Conservation Law For Neural Networks (12pts)

Consider a neural network (NN). To keep things as simple as possible assume that the
activation functions have weights but no bias terms. Assume that we train the NN using
gradient descent (GD). Let www denote the vector of weights. Let L(www) denote our cost
function (which depends of course on the given samples; but we suppress this dependence
in our notation). Then, starting with an initial value www0, we proceed by computing the
sequence wwwt = wwwt−1 − η∇L(wwwt−1) for a given step size η for a certain number of steps.
This is our GD algorithm. As we already explored in the class, it is often easier to look
at the continous-time version of this algorithm. This is called gradient flow (GF). The
corresponding continuous-time version is the differential equation ẇww(t) = −∇L(www). GD
(GF) is not the only possible algorithm. There are several variants that are used in practice,
e.g., Nesterov’s algorithm. For our purpose it is easiest to consider the so-called Newton
dynamics (ND). The corresponding continuous-time version reads ẅww(t) = −∇L(www(t)). For
various reasons it is not used in practice but it is mathematically easier.

1. (6pts) Show that when we apply the ND to our system then 1
2
∥ẇww(t)∥2 + L(www(t))

stays constant during the learning process, i.e., along the trajectory of the differential
equation given by the ND. Why is this important? This says that the sum of the
squares of the weights can grow by at most L(www(t = 0)), the initial loss. In particular,
the weights cannot grow to infinity. This observation is important for the analysis.

2. (6pts) Assume further that L(www) = f(∥www∥). Show that the (order-two antisymmetric)
tensor A = wwwẇwwT − ẇwwwwwT (with www viewed as a column vector) stays constant during the
learning process.

HINT: The proof is VERY easy. You have a function of time and want to show that it is
constant.

P.S.: If we do not think of NNs but mechanics then ∥ẇww(t)∥2 is the kinetic energy and L(www(t))

is the potential energy. The statement is then the usual conservation law of energy. The
second case corresponds to the conservation of the rotational momentum in case the potential
is radially symmetric.

P.P.S.: We derived this conservation law for the ND. But similar expressions can be derived
for other dynamics, such as GF.

P.P.P.S: In NN there are many other symmetries that stem e.g. from symmetries of the data
or the activiation functions. It can be shown that each such symmetry leads to a conserved
quantity.
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Solution:

1.

d

dt
(
1

2
∥ẇww(t)∥2 + L(www(t))) = ⟨ẇww(t), ẅww(t)⟩+ ⟨∇L(www(t)), ẇww(t)⟩

= ⟨ẅww(t) +∇L(www(t))︸ ︷︷ ︸
=0

, ẇww(t)⟩ = 0

2.

d

dt
A = ẇwwẇwwT +wwwẅwwT − ẅwwwwwT − ẇwwẇwwT

= −www(∇f(∥www∥))T +∇f(∥www∥)wwwT

= −w
wwwwwT

∥w∥
f ′(∥www∥) + wwwwwwT

∥w∥
f ′(∥www∥) = 0,

where in the last line we use ∇∥www∥ = www
∥w∥ and so ∇f(∥www∥) = www

∥w∥f
′(∥www∥).
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Problem 3. Mixture of linear regressions (15pts)

In this problem we guide you through the mixture of linear regressions model. Assume we
are given data points (xi, yi)

n
i=1 where xi ∈ Rd and yi ∈ R. To each data point i is associated

a hidden label zi ∈ {1, · · · , K} with iid distribution P(zi = t) = pt, t = 1, · · · , K. We assume
that the data points can be explained by a mixture of linear regressions:

yi =
K∑
t=1

wT
t · xi I(zi = t)

and xi ∼ N (0, Id), with Id the d× d identity matrix, and wt ∈ Rd are linear regression slope
vectors. This identity says that if data point i has label zi = t then the pair (xi, yi) satisfies
yi = wT

t xi, but note that the label zi is a hidden random variable.

The model is noiseless for simplicity here (but one could also have additive gaussian noise).
We assume throughout that K ≤ d and that the vectors wt are linearly independent.

The goal is to learn the parameters of the model: {pt, wt}Kt=1. We are not interested in
learning the labels. We will guide you through a sequence of questions leading to an algorithm
(proposed in the recent literature). Note that the first question requires a bit of algebra but
if you want you can proceed to the second and third questions directly.

1. (5pts) We define the ”moments” m0 =
1
n

∑n
i=1 y

2
i and M2 =

1
2n

∑n
i=1 y

2
i xi⊗xi− 1

2
m0Id.

Prove:

E[M2] =
K∑
t=1

ptwt ⊗ wt

Hint: It is best to work with components of vectors denoted by upper-script indices,
e.g., xα

i , wα
t with α = 1, · · · , d. We recall that for xi ∼ N (0, Id) we have E(xα

i x
β
i ) = δαβ

and E(xα
i x

β
i x

γ
i x

δ
i ) = δαβδγδ + δαγδβδ + δαδδβγ.

2. (5pts) Assume first that wt’s are orthonormal vectors.

• (2.5pts) What is the condition on pt’s so that the vectors wt can be uniquely
determined, and how do you determine them ? (answer with a few words - no
calculation).

• (2.5pts) Further explain how to get an estimate of pt and wt from real observations
(xi, yi)

n
i=1 when n becomes very large. You can assume that for n very large M2

concentrates.

3. (5pts) From now on we do not assume anymore that the wt’s are orthogonal (we still
assume they have unit norm).

• (1 pt) Explain why we cannot uniquely determine wt’s if we only use M2 ?

7



• (4 pt) We define m1 =
1
6n

∑n
i=1 y

3
i xi and also

M3 =
1

6n

n∑
i=1

y3i xi ⊗ xi ⊗ xi −
d∑

ℓ=1

(m1 ⊗ eℓ ⊗ eℓ + eℓ ⊗m1 ⊗ eℓ + eℓ ⊗ eℓ ⊗m1)

where eℓ is the ℓ-th canonical basis vector of Rd; in components eαℓ = δαℓ. One
can check with some algebra that (you are not asked to do so)

E[M3] =
K∑
t=1

pt wt ⊗ wt ⊗ wt

Given the two tensors E[M2] and E[M3] we have seen in class the theory combining
the whitening procedure and tensor power method to determine the set of pt and
wt’s.
Write down a pseudocode (with a few comments) implementing an algorithm
based on whitening and tensor power method that outputs the parameters of the
mixture of regression model given real observations (xi, yi)

n
i=1.
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Solution:

1. First we compute:

E[m0] =
1

n

n∑
i=1

K∑
t=1

E[y2i |zi = t]P(zi = t) =
1

n

n∑
i=1

K∑
t=1

E[(wT
t · xi)

2]pt

=
1

n

n∑
i=1

K∑
t=1

pt

t∑
α,β=1

wα
t w

β
t E[xα

i x
β
i ] =

K∑
t=1

pt

t∑
α=1

(wα
t )

2 =
K∑
t=1

∥wt∥2pt

Similarly:

E[
1

2n

n∑
i=1

y2i (xi ⊗ xi)
γδ] =

1

2n

n∑
i=1

K∑
t=1

E[y2i x
γ
i x

δ
i |zi = t]P(zi = t)

=
1

2n

n∑
i=1

K∑
t=1

E[(wT
t · xi)

2xγ
i x

δ
i ]pt =

1

2n

n∑
i=1

K∑
t=1

pt
∑
α,β

E[wα
t x

α
i w

β
t x

β
i x

γ
i x

δ
i ]

=
1

n

n∑
i=1

K∑
t=1

pt
∑
α,β

wα
t w

β
t E[wα

t x
α
i w

β
t x

β
i x

γ
i x

δ
i ] =

1

2

K∑
t=1

pt
∑
α,β

wα
t w

β
t (δαβδγδ + δαγδβδ + δαδδβγ)

=
1

2

K∑
t=1

pt
∑
α

(wα
t )

2δγδ +
1

2

K∑
t=1

pt(w
γ
t w

δ
t + wδ

tw
γ
t ) =

1

2
E[m0]I

γδ
d +

K∑
t=1

pt(wt ⊗ wt)
γδ

These two results imply E[M2] =
∑

t ptwt ⊗ wt =
∑

t ptwtw
T
t

2. The d × d matrix E[M2] is real symmetric. So if we know beforehand that wt are
orthonormal, they must be the eigenvectors, and pt must be the eigenvalues. They are
found by an SVD or diagonalization of the matrix. The condition of unicity is that all
pt’s are distinct.
In practice with real data one considers the empirical matrix M emp

2 = 1
2n

∑n
i=1 y

2
i (xi ⊗

xi−Id). This is a real symmetric d×d matrix and one can do an SVD (or diagonaliza-
tion). We have K ≤ d by assumption. One will keep the top K eigenvalues and and
eigenvectors as estimates of pt and wt’s. For n large the other d −K eigenvalues are
close to zero (and we discard them) as one expects that M2 concentrates on E[M2].

3. If the wt’s are not orthogonal they do not constitute the set of eigenvectors. The de-
composition of the matrix into rank one matrices is not unique because of the ”rotation
problem”. More specifically for any K ×K orthogonal matrix R we have that

K∑
t=1

ptwt ⊗ wt = [
√
p1w1, · · · ,

√
pKwK ][

√
p1w1, · · · ,

√
pKwK ]

T

= [
√
p1w1, · · · ,

√
pKwK ]RRT [

√
p1w1, · · · ,

√
pKwK ]

T

= [u1, · · · , uK ][u1, · · · , uK ]
T =

∑
t

ut ⊗ ut
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where the new vectors are ut =
∑K

s=1

√
pswsRst.

4. The pseudocode takes input data (xi, yi)
n
i=1 and outputs {wt, pt}Kt=1:

(a) Compute empirical moments:
m0 ← 1

n

∑n
i=1 y

2
i

m1 ← 1
6n

∑n
i=1 y

3
i xi

M2 ← 1
2n

∑n
i=1 y

2
i xi ⊗ xi − 1

2
m0Id

M3 ← 1
6n

∑n
i=1 y

3
i xi ⊗ xi ⊗ xi −

∑d
ℓ=1(m1 ⊗ eℓ ⊗ eℓ + eℓ ⊗m1 ⊗ eℓ + eℓ ⊗ eℓ ⊗m1).

(b) Compute the SVD of M2:
M2 = UDUT (as M2 is real symmetric D = diag(d1, · · · , dK) are the K non-
zero eigenvalues and U is a d×K matrix with K orthonormal columns) and do
W ← UD−1/2 = Udiag(d

−1/2
1 , ·, d−1/2

K ).
(c) Whitening of M3:

Tα′β′γ′

3 ←
∑

α,β,γ M
αβγ
3 Wαα′

W ββ′
W γγ′ .

(d) Tensor power method applied to T3:
Input T3. Output set {λt, vt}t=1,··· ,K such that T3 =

∑K
t=1 λtvt⊗vt⊗vt. The theory

shows that vt is orthonormal which is necessary for the tensor power iterations.
For s = 1, · · · , K − 1 do:

i. Initialize the iterations with a random vector v(0) and for n = 0, · · · , T (T
large enough) do v(n+1) ← T3(I,v(n),v(n))

∥T3(I,v(n),v(n))∥ . Recall the notation: T3(I, v, v)
α =∑

β,γ T
αβγ
3 vβvγ

ii. Do vs ← w(T ) and λs ← T3(v
(T ), v(T ), v(T )) =

∑
α,β,γ T

αβγ
3 v(T )αv(T )βv(T )γ

iii. Deflation step T3 ← T3 − psvs ⊗ vs ⊗ vs.
(e) Undo the whitening:

For all t = 1, · · · , K do µt ← 1/λ2
t , wt = (1/

√
pt)Wvt.
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Problem 4. These are 4 short questions. Answer each point with a short justification or
calculation. [13pts]

1. (2 pts) Let x⃗i, y⃗i ∈ RN , N ≥ 2, i = 1, 2, 3 be six N -dimensional real component
vectors such that their components satisfy xα

i = yαi for α = 1, · · · , N − 1 and xN
i ̸= yNi

(here the upper index labels the component of the vector). Consider the tensor T =

x⃗1 ⊗ x⃗2 ⊗ x⃗3 + y⃗1 ⊗ y⃗2 ⊗ y⃗3.

(a) (1pt) Does Jennrich’s theorem apply ?
(b) (1pt) The tensor-rank equals 2 ?

2. (4 pts) For two perpendicular (and non-zero) vectors x⃗, y⃗ in RN , N ≥ 2, and for t ≥ 1,
let S(t) = x⃗⊗ x⃗⊗ (x⃗− ty⃗) + (x⃗+ 1

t
y⃗)⊗ (x⃗+ 1

t
y⃗)⊗ ty.

(a) (1pt) The tensor-rank of S(t) equals 2 for all fixed t ≥ 1 ?
(b) (3pt) What is the rank of the limiting tensor limt→+∞ S(t) ?

3. (3 pts) Consider the function

f(x) = x2 + 2.5 cos x+ |x|,

defined on the real line R. Which of the following statements is correct and why/why
not? The function f is:

(a) (1pt) convex
(b) (1pt) differentiable everywhere
(c) (1pt) subdifferentiable everywhere

4. (4pts) Consider some hypothesis class H. Which of the following is true? Why or why
not?

(a) (1pt) If |H| is infinite, it is not PAC learnable.
(b) (1pt) If H is PAC learnable, it has finite VC dimension.
(c) (1pt) IfH is specified by a finite number of parameters, it has finite VC dimension.
(d) (1pt) If H = H1 ∪ H2, where H1 and H2 are some hypothesis classes that are

PAC learnable, then H is also PAC learnable.
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Solution:

1. (a) Yes, Jennrich’s theorem applies because [x1, y1], [x2, y2], [x3, y3] are N × 2 full
column rank matrices (i.e., with independent columns) as long as the first N − 1

components do not vanish. Otherwise it doesnt apply.
(b) Yes, according to Jennrich’s theorem the tensor-rank is necessarily equal to 2 as

long as the first N − 1 components do not vanish. Otherwise the rank is not
necessarily two.

2. (a) Yes the rank is 2 for all t ≥ 1, because the matrices [x⃗, x⃗+ 1
t
y⃗], [x− ty⃗, ty⃗] are full

column rank as long as t ̸= 0 and t fixed finite.
(b) Developing S(t) = x⃗ ⊗ x⃗ ⊗ x⃗ + x⃗ ⊗ y⃗ ⊗ y⃗ + y⃗ ⊗ x⃗ ⊗ y⃗ + 1

t
y⃗ ⊗ y⃗ ⊗ y⃗. Thus

limt→+∞ = x⃗⊗ x⃗⊗ x+ x⃗⊗ y⃗⊗ y⃗+ y⃗⊗ x⃗⊗ y⃗. Note that Jennrich’s theorem does
not apply to the limiting tensor. Despite this its rank is 3. Indeed we show by
contradiction that the rank cannot be 1 or 2.
If the rank was 1 then we should have x⃗⊗x⃗⊗x⃗+x⃗⊗y⃗⊗y⃗+y⃗⊗x⃗⊗y⃗ = a⃗⊗b⃗⊗c⃗. But
then by orthogonality of x⃗ and y⃗ we would have ∥x∥2x⃗⊗x+∥x∥2y⃗⊗y = (x⃗T ·a⃗)⃗b⊗c⃗
which is not possible because the l.h.s is rank 2 and the r.h.s rank 1 (or nul).
If the rank was 2 then we would have x⃗ ⊗ x⃗ ⊗ x⃗ + x⃗ ⊗ y⃗ ⊗ y⃗ + y⃗ ⊗ x⃗ ⊗ y⃗ =

a⃗⊗ b⃗⊗ c⃗+ e⃗⊗ f⃗ ⊗ g⃗ with [⃗a, e⃗], [⃗b, f⃗ ], [⃗c, g⃗] with independent columns. Viewing
both sides of the equation as multilinear transforms on (y⃗, I, I) we find ∥y⃗∥2x⃗⊗y⃗ =

(y⃗T · a⃗)⃗b ⊗ c⃗ + (y⃗T · e⃗)f⃗ ⊗ g⃗ which means (y⃗T · a⃗) = 0 or (y⃗T · e⃗) = 0 (because
otherwise the r.h.s is rank 2). Suppose w.l.o.g that (y⃗T · e⃗) = 0. Then b⃗ ∼ x⃗,
c⃗ ∼ y⃗. We get x⃗ ⊗ x⃗ ⊗ x⃗ + x⃗ ⊗ y⃗ ⊗ y⃗ + y⃗ ⊗ x⃗ ⊗ y⃗ = λa⃗ ⊗ x⃗ ⊗ y⃗ + e⃗ ⊗ f⃗ ⊗ g⃗.
Applying (I, I, x⃗) we get ∥x⃗∥2x⃗ ⊗ x⃗ = e⃗ ⊗ f⃗(g⃗T · x⃗) and thus e⃗ ∼ x⃗, f⃗ ∼ x⃗. We
get x⃗⊗ x⃗⊗ x⃗+ x⃗⊗ y⃗⊗ y⃗+ y⃗⊗ x⃗⊗ y⃗ = λa⃗⊗ x⃗⊗ y⃗+µx⃗⊗ x⃗⊗ g⃗. Applying (I, y⃗, I)

we get ∥y⃗∥2x⃗⊗ y⃗ = 0 which is a contradiction.

3. (a) For x ≥ 0, f ′′(x) = 2 − 2.5 cos(x), which is negative for some values of x ≥ 0.
Hence the function is not convex.

(b) f is not differentiable at x = 0 due to the term |x|.
(c) This is a little tricky. The function has a derivative everywhere except at 0

where it has a subderivative. But it is not convex and hence not subdifferentiable
everywhere. :-( We gave you a point either way. :-)

4. (a) False. If H has finite VC dimension then it is PAC learnable due to the Funda-
mental theorem of Statistical learning.

(b) True. According to the Fundamental theorem of Statistical learning.
(c) False. We saw in the homework that there are hypotheses classes with infinite

VC dimension that are specified by a single parameter.
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(d) True. If H1,H2 have finite VC dimension then the VC dimension of their union
is also finite and therefore H is also PAC learnable.
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