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Problem 1. Tensors (22 pts)

1. Consider the tensor M =

(
1

2

)
⊗

(
1

1

)
+

(
1

0

)
⊗
(
0

1

)
.

(a) (2 pts) Write down the matrix components of M .
(b) (5 pts) For the matrix M of part (a) exhibit an uncountable number of decom-

positions of the form M = a⃗⊗ b⃗+ c⃗⊗ d⃗ using the rotation matrices

R =

(
cos θ − sin θ

sin θ cos θ

)
, θ ∈ R .

2. (5 pts) Consider the following tensor decomposition

T =

1

1

1

⊗
1

0

0

⊗
1

0

0

+

0

1

2

⊗
0

1

0

⊗
0

1

1

+

1

3

5

⊗
0

1

1

⊗
0

1

0


Is this decomposition unique? Justify your answer. What is the rank of T?

3. Let a⃗1, a⃗2 ∈ R2 be linearly independent and b⃗1, b⃗2 ∈ R2 be linearly independent as well.
We define T = a⃗1 ⊗ b⃗1 ⊗ c⃗+ a⃗2 ⊗ b⃗2 ⊗ c⃗ where c⃗ ∈ R2 is not the zero vector.

(a) (4 pts) Does Jennrich’s theorem apply?
(b) (6 pts) Prove that the tensor rank of T is 2.

Solution:

1. (a) M =

(
1 2

2 2

)
.

(b) Using that RRT = I2:

M =

(
1

2

)
⊗

(
1

1

)
+

(
1

0

)
⊗
(
0

1

)
=

(
1 1

2 0

)(
1 1

0 1

)
=

(
1 1

2 0

)
R ·RT

(
1 1

0 1

)
= a⃗⊗ b⃗+ c⃗⊗ d⃗

where [⃗
a c⃗

]
=

(
1 1

2 0

)
R =

(
cos θ + sin θ cos θ − sin θ

2 cos θ −2 sin θ

)
;

[⃗
b d⃗

]
=

(
1 0

1 1

)
R =

(
cos θ − sin θ

cos θ + sin θ cos θ − sin θ

)
.
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2. We have T = a⃗1 ⊗ b⃗1 ⊗ c⃗1 + a⃗2 ⊗ b⃗2 ⊗ c⃗2 + a⃗3 ⊗ b⃗3 ⊗ c⃗3 where

[⃗
a1 a⃗2 a⃗3

]
=

1 0 1

1 1 3

1 2 5

 has pairwise independent columns;

[⃗
b1 b⃗2 b⃗3

]
=

1 0 0

0 1 1

0 0 1

 has linearly independent columns;

and
[
c⃗1 c⃗2 c⃗3

]
=

1 0 0

0 1 1

0 1 0

 has linearly independent columns.

By Jennrich’s theorem the decomposition is therefore unique and the rank of T is 3.

3. (a) We have T = a⃗1 ⊗ b⃗1 ⊗ c⃗1 + a⃗2 ⊗ b⃗2 ⊗ c⃗2 where c⃗1 = c⃗2 = c⃗. We cannot invoke
Jennrich’s theorem because the vectors c⃗1, c⃗2 are not pairwise independent.

(b) The tensor rank is obviously less than or equal to 2. We will prove by contradiction
that it cannot be equal to 1.
Assume the rank is one. Then there exist vectors e⃗, f⃗ , g⃗ such that T = e⃗⊗ f⃗ ⊗ g⃗.
Pick any vector x⃗ that is not orthogonal to c⃗. We have:

(e⃗⊗ f⃗)(g⃗ T x⃗) = (⃗a1 ⊗ b⃗1 + a⃗2 ⊗ b⃗2)(c⃗
T x⃗)

The matrix (e⃗⊗ f⃗)(g⃗ T x⃗) has rank 0 or 1 while the matrix (⃗a1⊗ b⃗1+ a⃗2⊗ b⃗2)(c⃗
T x⃗)

has rank 2 because a⃗1⊗b⃗1+a⃗2⊗b⃗2 has rank 2 and c⃗ T x⃗ ̸= 0. This is a contradiction.
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Problem 2. Tensor decomposition & estimation of a sensing matrix (23 pts)

Let N ≥ K two positive integers. Define the N ×K real matrix A :=
[
µ⃗(1) µ⃗(2) · · · µ⃗(K)

]
where the column vectors µ⃗(k) = (µk

α)
N
α=1, k = 1 . . . K, are (fixed) N -dimensional linearly

independent vectors.

Let h⃗ = (hk)
K
k=1 be a random vector whose components hk’s are independently (but not

necessarily identically) distributed. We assume that ∀k : E[hk] = E[h3
k] = 0 and E[h2

k],E[h4
k]

are finite positive. We define the excess kurtoses Kk =
E[h4

k]

E[h2
k]

2 − 3. If hk has a zero-mean
Gaussian distribution then Kk = 0, so Kk can be essentially viewed as a measure of non-
Gaussianity.

We are given L observations y⃗ (ℓ) = (yℓα)
N
α=1 := Ah⃗(ℓ) where h⃗(1), h⃗(2), . . . , h⃗(L) i.i.d.∼ h⃗. Except

for what is known on the distribution of h⃗, we don’t know anything on the input vectors
h⃗(1), h⃗(2), . . . , h⃗(L). The goal of the exercise is to show how to recover the columns of the
sensing matrix A from these L observations.

1. (2 pts) Let y⃗ := Ah⃗. We define Ŝ and F̂ the empirical estimates (using the L observa-
tions y⃗ (ℓ)) of the second-moment matrix S := E[y⃗ ⊗ y⃗] and the fourth-moment tensor
F := E[y⃗ ⊗ y⃗ ⊗ y⃗ ⊗ y⃗].
Write down expressions for the components Ŝαβ of Ŝ and F̂αβγδ of F̂ in terms of the
components of y⃗ (1), y⃗ (2), . . . , y⃗ (L).

2. (3 pts) From now on we suppose that Ŝ and F̂ are good estimates of S and F , respec-
tively. Prove the following identities:

S =
K∑
k=1

E[h2
k] µ⃗

(k) ⊗ µ⃗(k) ;

F =
K∑
k=1

E[h4
k] µ⃗

(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) +
∑

1≤j ̸=k≤K

E[h2
j ]E[h2

k]
(
µ⃗(j) ⊗ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(k)

+ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(j) ⊗ µ⃗(k)

+ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(j)
)
.

3. (3 pts) We now form the tensor T with components

Tαβγδ := Fαβγδ − SαβSγδ − SαγSβδ − SαδSβγ .

Use the previous question to show that

T =
K∑
k=1

KkE[h2
k]

2 µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) .
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4. (3 pts) Show that S = UDUT with U =
[
u⃗ (1) u⃗ (2) · · · u⃗ (K)

]
∈ RN×K a matrix with

orthonormal columns, and D = Diag(d1, d2, . . . , dK) a diagonal matrix with diagonal
entries d1 ≥ d2 ≥ · · · ≥ dK > 0.

5. (3 pts) Define the vectors v⃗ (k) :=
√
E[h2

k]W
T µ⃗(k), k = 1 . . . K, where W = UD− 1

2 and
the tensor T̃ :=

∑K
k=1Kk v⃗

(k) ⊗ v⃗ (k) ⊗ v⃗ (k) ⊗ v⃗ (k).
Explain how to obtain the components T̃αβγδ of T̃ from those of T , i.e., write down the
formula relating them. How is this process (the transformation of T into T̃ ) called?

6. (2 pts) As we have seen in class, the set of vectors {v⃗ (1), . . . , v⃗ (K)} is orthonormal and
we can try to recover them using the tensor power method.
What happens if one of the excess kurtosis Kk is zero?

7. (4 pts) From now on we suppose that all the excess kurtoses are nonzero.
Write a small pseudo-code for the power method applied to T̃ to recover Kk and (up
to a plus or minus sign) v⃗ (k) for k = 1 . . . K.

8. (3 pts) Assume that we also know the second moments E[h2
k] for k = 1 . . . K.

After having recovered Kk and ±v⃗ (k) for k = 1 . . . K with the power method, how do
you recover ±µ⃗ (k) (so up to a plus or minus sign) for k = 1 . . . K?

Solution:

1. The empirical estimate Ŝ = 1
L

∑L
ℓ=1 y⃗

(ℓ) ⊗ y⃗ (ℓ) of S has components

Ŝαβ =
1

L

L∑
ℓ=1

yℓαy
ℓ
β .

The empirical estimate F̂ = 1
L

∑L
ℓ=1 y⃗

(ℓ) ⊗ y⃗ (ℓ) ⊗ y⃗ (ℓ) ⊗ y⃗ (ℓ) of F has components

F̂αβγδ =
1

L

L∑
ℓ=1

yℓαy
ℓ
βy

ℓ
γy

ℓ
δ .

2. Remember that y⃗ =
∑k

k=1 hkµ⃗
(k). By expanding the tensor products we get:

S = E[y⃗ ⊗ y⃗] =
K∑
j=1

K∑
k=1

E[hjhk]µ⃗
(j) ⊗ µ⃗(k) ; (1)

F = E[y⃗ ⊗ y⃗ ⊗ y⃗ ⊗ y⃗] =
K∑
i=1

K∑
j=1

K∑
k=1

K∑
ℓ=1

E[hihjhkhℓ]µ⃗
(i) ⊗ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(ℓ) . (2)
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The components of h are independent and centered so E[hjhk] = E[hj]E[hk] = 0 if
j ̸= k. Hence (1) simplifies:

S = E[y⃗ ⊗ y⃗] =
K∑
k=1

E[h2
k]µ⃗

(k) ⊗ µ⃗(k) .

Similarly, if one of the indices i, j, k, ℓ is distinct of all the others then E[hihjhkhℓ] = 0.
Therefore E[hihjhkhℓ] is nonzero if, and only if, i = j = k = ℓ or i = j ̸= k = ℓ,
i = k ̸= j = ℓ, i = ℓ ̸= j = k. Hence (2) reads:

F =
K∑
k=1

E[h4
k]µ⃗

(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) +
∑

1≤i ̸=k≤K

E[h2
i ]E[h2

k]µ⃗
(i) ⊗ µ⃗(i) ⊗ µ⃗(k) ⊗ µ⃗(k)

+
∑

1≤k ̸=j≤K

E[h2
k]E[h2

j ]µ⃗
(k) ⊗ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(j)

+
∑

1≤i ̸=k≤K

E[h2
i ]E[h2

k]µ⃗
(i) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(i)

=
K∑
k=1

E[h4
k] µ⃗

(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) +
∑

1≤j ̸=k≤K

E[h2
j ]E[h2

k]
(
µ⃗(j) ⊗ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(k)

+ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(j) ⊗ µ⃗(k)

+ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(j)
)
.

3. We have seen that F =
∑K

k=1 E[h4
k] µ⃗

(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) + E where

E :=
∑

1≤j ̸=k≤K

E[h2
j ]E[h2

k]
(
µ⃗(j) ⊗ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(k) + µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(j) ⊗ µ⃗(k)

+ µ⃗(j) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(j)
)
.

The components of E satisfy:

Eαβγδ =
∑

1≤j ̸=k≤K

E[h2
j ]E[h2

k](µ
j
αµ

j
βµ

k
γµ

k
δ + µj

αµ
k
βµ

j
γµ

k
δ + µj

αµ
k
βµ

k
γµ

j
δ)

=

( K∑
j=1

E[h2
j ]µ

j
αµ

j
β

)( K∑
k=1

E[h2
k]µ

k
γµ

k
δ

)
+

( K∑
j=1

E[h2
j ]µ

j
αµ

j
γ

)( K∑
k=1

E[h2
k]µ

k
βµ

k
δ

)

+

( K∑
j=1

E[h2
j ]µ

j
αµ

j
δ

)( K∑
k=1

E[h2
k]µ

k
βµ

k
γ

)
− 3

K∑
k=1

E[h2
k]

2µk
αµ

k
βµ

k
γµ

k
δ

= SαβSγδ + SαγSβδ + SαδSβγ − 3

( K∑
k=1

E[h2
k]

2µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k)

)
αβγδ

.
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It directly follows that

Tαβγδ =

( K∑
k=1

E[h4
k]µ⃗

(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k)

)
αβγδ

− 3

( K∑
k=1

E[h2
k]

2µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k)

)
αβγδ

=

( K∑
k=1

KkE[h2
k]

2µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k) ⊗ µ⃗(k)

)
αβγδ

.

4. The matrix S is symmetric positive semidefinite so it can be diagonalised in an or-
thonormal basis: S =

∑N
k=1 dku⃗

(k) ⊗ u⃗(k) with
[
u⃗(1) u⃗(2) · · · u⃗(N)

]
∈ RN×N an

orthonormal matrix and d1 ≥ d2 ≥ · · · ≥ dN ≥ 0. Besises S has rank K so
exactly K of its eigenvalues are nonzero: S =

∑K
k=1 dku⃗

(k) ⊗ u⃗(k) = UDUT with
U =

[
u⃗(1) u⃗(2) · · · u⃗(K)

]
∈ RN×K and D = Diag(d1, d2, . . . , dK).

5. By definition of the vectors v⃗(k) we have:

T̃ =
K∑
k=1

KkE[h2
k]

2(W T µ⃗(k))⊗ (W T µ⃗(k))⊗ (W T µ⃗(k))⊗ (W T µ⃗(k)) .

So the components of T̃ are given by the formula

T̃αβγδ =
∑

α′,β′,γ′,δ′

Wα′αWβ′βWγ′γWδ′δ Tα′β′γ′δ′ .

This transformation of T into T̃ is called a whitening process.

6. If Kk is zero then it is impossible to recover v⃗(k) with the tensor power method and,
as a consequence, to recover µ⃗(k) the kth column of A.

7. The pseudocode for the tensor power method is given in Algorithm 1.

8. By definition v⃗ (k) =
√

E[h2
k]W

T µ⃗(k) =
√

E[h2
k]D

− 1
2UT µ⃗(k) so

UUT µ⃗(k) = UD
1
2

v⃗ (k)√
E[h2

k]
.

Finally, µ⃗(k) belongs to the subspace spanned by the columns of U so UUT µ⃗(k) = µ⃗(k).
We conclude that µ⃗(k) = UD

1
2 v⃗ (k)/

√
E[h2

k]. Of course, we only know v⃗ (k) up to a plus
or minus sign and we will recover µ⃗(k) up to a plus or minus sign too.
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Algorithm 1 Tensor power method
1: procedure PowerMethod(T̃ , K, Tmax)
2: vectors ← [ ]

3: kurtoses ← [ ]

4: for i = 1 to K do
5: v ← normallyDistributedVector(size = K)

6: for j = 1 to Tmax do ▷ Tmax iterations of the power method.
7: for α = 1 to K do
8: v[α]←

∑K
β,γ,δ=1 T̃α,β,γ,δv[β]v[γ]v[δ]

9: end for
10: v ← v/∥v∥ ▷ Renormalizing v

11: end for
12: K ←

∑K
,α,β,γ,δ=1 T̃α,β,γ,δv[α]v[β]v[γ]v[δ]

13: kurtoses.append(K)
14: vectors.append(v)
15: T̃ ← T̃ −K v⊗4 ▷ Subtracting the recovered rank-one tensor from T̃

16: end for
17: return vectors, kurtoses
18: end procedure

Problem 3. Stability implies Generalization (25 pts) Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)}
be a training dataset composed of n i.i.d. samples drawn from D. As usual, we denote
LD(h) = E(x,y)∼D[l(h(x), y)] and LS(h) =

1
n

∑n
i=1 l(h(xi), yi) the true and empirical risks of

a hypothesis h, respectively. For simplicity, let us denote by hS the output of a learning
algorithm when trained with dataset S.

An important property of learning algorithms is their ability to generalize, i.e., the true and
empirical risks of the output hypothesis should be close in expectation. Formally, we say
that a learning algorithm A ϵ-generalizes in expectation if

|ES[LS(hS)− LD(hS)]| < ϵ . (3)

An interesting connection arises when we investigate the stability of a learning algorithm.
Formally, we call a learning algorithm ϵ-uniformly stable if ∀S, S ′ datasets of size n that
differ in at most one example we have

sup
(x,y)

l(hS(x), y)− l(hS′(x), y) < ϵ . (4)

Notations: (x1, y1), (x2, y2), . . . , (xn, yn), (x̃1, ỹ1), . . . , (x̃n, ỹn) are 2n independently sampled
training examples. We define S = {(x1, y1), . . . , (xn, yn)}, S̃ = {(x̃1, ỹ1), . . . , (x̃n, ỹn)} and
S(i) = {(x1, y1), . . . , (xi−1, yi−1), (x̃i, ỹi), (xi+1, yi+1), . . . , (xn, yn)}.
Prove that:
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1. (5 pts) LD(hS) = ES̃[
1
n

∑n
i=1 l(hS(x̃i), ỹi)].

2. (8 pts) ES,S̃[l(hS(x̃i), ỹi)] = ES,S(i) [l(hS(i)(xi), yi)].

3. (12 pts) An ϵ-uniformly stable learning algorithm ϵ-generalizes in expectation.

Solution:

1. Note that since S̃ is composed of n i.i.d. samples LD(hS) = E(x̃i,ỹi)∼D[l(hS(x̃i), ỹi)] for
all i. Thus, by linearity of expectation LD(hS) = ES̃[

1
n

∑n
i=1 l(hS(x̃i), ỹi)].

2.

ES,S̃[l(hS(x̃i), ỹi)] = ES,(x̃i,ỹi)[l(hS(x̃i), ỹi)] =

(since (x1, y1), . . . , (xn, yn), (x̃i, ỹi) are i.i.d. we can interchange (xi, yi) with (x̃i, ỹi) )
= ES(i),(xi,yi)[l(hS(i)(xi), yi)]

3.

|ES[LS(hS)− LD(hS)]|
(1)
= |ES

[
LS(hS)− ES̃

[
1
n

∑n
i=1 l(hS(x̃i), ỹi)

]]
| =

= |ES [LS(hS)]− ES,S̃

[
1
n

∑n
i=1 l(hS(x̃i), ỹi)

]
| =

= |ES [LS(hS)]− 1
n

∑n
i=1 ES,S̃ [l(hS(x̃i), ỹi)] |

(2)
=

= |ES [LS(hS)]− 1
n

∑n
i=1 ES(i),(xi,yi) [l(hS(i)(xi), yi)] | =

= |ES

[
1
n

∑n
i=1 l(hS(xi), yi))

]
− 1

n

∑n
i=1ES,S(i) [l(hS(i)(xi), yi)] | =

= | 1
n

∑n
i=1ES,S(i) [l(hS(xi), yi))− l(hS(i)(xi), yi)] |

( ϵ-uniform stability)
≤

≤ 1
n

∑n
i=1 ϵ = ϵ
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Problem 4. VC dimension of union (20 pts) Let H1,H2, . . . ,Hr be hypothesis classes over
some fixed domain set X . Let d = maxiVCdim(Hi) and assume that d > 2.
Prove that:

1. (13 pts) VCdim(
∪r

i=1Hi) ≤ 4d
log(2)

log
(
2d/log(2)

)
+ 2 log(r)

log(2)
.

Hint: Use Sauer’s lemma for bounding the growth function and the inequality
“Let a ≥ 1 and b > 0. If x ≤ a log(x) + b then x ≤ 4a log(2a) + 2b.”

2. (7 pts) For r = 2 the bound can be strengthen to VCdim(H1 ∪H2) ≤ 2d+ 1.
Hint:

∑k
i=0

(
k
i

)
= 2k

Solution:

1. Let H =
∪r

i=1Hi. By definition of the growth function we have τH(m) ≤
∑r

i=1 τHi
(m)

for any set of m points. If k > d + 1 points are shattered by H then 2k = τH(k) ≤∑r
i=1 τHi

(k) ≤ rkd, where the last inequality follows directly from Sauer’s lemma.
Taking the logarithm on both sides and using the inequality yields

k ≤ 4d

log(2)
log

(
2d

log(2)

)
+ 2

log(r)

log(2)
.

Note that this inequality is trivially satisfied if k ≤ d+ 1.

2. Assume that k ≥ 2d+ 2. It is enough to prove that τH1∪H2(k) < 2k.

τH1∪H2(k) ≤ τH1(k) + τH2(k) ≤
d∑

i=0

(
k

i

)
+

d∑
i=0

(
k

i

)
=

=
d∑

i=0

(
k

i

)
+

d∑
i=0

(
k

k − i

)
=

d∑
i=0

(
k

i

)
+

k∑
i=k−d

(
k

i

)
≤

≤
d∑

i=0

(
k

i

)
+

k∑
i=d+2

(
k

i

)
<

d∑
i=0

(
k

i

)
+

k∑
i=d+1

(
k

i

)
=

=
k∑

i=0

(
k

i

)
= 2k

Lemma. (Sauer-Shelah-Perles) Let H be a hypothesis class with V Cdim(H) ≤ d < ∞
and growth function τH. Then, for all m, τH(m) ≤

∑d
i=0

(
m
i

)
. In particular, if m > d + 1

and d > 2 then τH(m) < md.
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Problem 5. Short problems (10 pts)

(i) (5 pts) You have lots and lots and lots of data. You use a neural net with a single
hidden layer and run stochastic gradient descent. What theoretical framework(s) will
likely give you meaningful insights for this situation? Explain why.

(a) NTK as discussed in the course
(b) mean field model as discussed in the course
(c) basic learning theory generalization bounds

(ii) (5 pts) Assume that you are in a scenario where the mean field model that we discussed
in the course applies. Can you use the machinery discussed in the paper by Montanari
to optimize and predict the performance of an actual system? What, if any, are the
remaining problems. Write down a few (and we mean a few) sentences to discuss.

Solution:

(i) (5 pts) Since you have so much data the mean field model is likely going to predict
your performance correctly. The NTK applies even for a fixed amount of data but it
only applies in the setting of vanishing learning rate (and the width of the network
should be large). Since you have so much data the basic generalization bound will also
tell you that if you chose according to the empirical mean you will likely choose close
to an optimal hypothesis. But you still need to argue that the stochastic gradient will
in fact do well in this scenario.

(ii) (5 pts) The main problem is that there is no easy and efficient way to compute the
solution of the associated differential equation. In fact, solving such types of differ-
ential equations is typically done by running stochastic gradient descent! :-) So this
framework can be used to discuss convergence and other theoretical questions but cur-
rently cannot be used to predict the performance or to optimize the parameters of the
system.
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