Final Exam: Solutions

Note: Please pay attention to the presentation of your answers! (3 points)

Exercise 1. Quiz. (18 points)

For each assertion below, state whether it is correct or not (1 point) and provide a short justification for your answer (2 points).
a) Let A, B be two generic subsets of Ω. Then $\sigma(A, B)=\sigma(A, B \backslash A)$.

Answer: Incorrect. The set $A \cap B$ does not belong to the second.
b) If the random variables X, Y, Z satisfy $\sigma(X) \Perp \sigma(Y)$ and $\sigma(X) \Perp \sigma(Z)$, then $\sigma(X) \Perp \sigma(Y, Z)$.

Answer: Incorrect. Ctr-ex: $Y \Perp Z$, each taking values $\{0,1\}$ wp $1 / 2, X=Y+Z(\bmod 2)$.
c) Let F be a generic cdf. Then $G(t)=\left\{\begin{array}{ll}1 /(1-\log (F(t))), & \text { if } F(t)>0, \\ 0, & \text { if } F(t)=0,\end{array}\right.$ is necessarily also a cdf.

Answer: Correct. G is non-decreasing, right-continuous, $\lim _{t \rightarrow-\infty} G(t)=0$ and $\lim _{t \rightarrow+\infty} G(t)=1$.
d) The function $\phi(t)=\left\{\begin{array}{ll}1, & \text { if }|t| \leq 1, \\ 0, & \text { if }|t|>1,\end{array}\right.$ is the characteristic function of a random variable X.

Answer: Incorrect. ϕ is not continuous.
e) Let X, Y be two i.i.d. $\mathcal{N}(0,1)$ random variables and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous and bounded function. Then $f(X+Y)$ and $f(X-Y)$ are independent.
Answer: Correct, as $X+Y$ and $X-Y$ are independent.
f) Let $\left(X_{n}, n \geq 2\right)$ be a sequence of i.i.d. $\mathcal{N}(0,1)$ random variables and $\left(M_{n}, n \in \mathbb{N}\right)$ be the process defined recursively as follows:

$$
M_{0}=M_{1}=0, \quad M_{n+1}=\frac{M_{n}+M_{n-1}}{2}+X_{n+1}, \quad \text { for } n \geq 1 .
$$

Then $\left(M_{n}, n \geq 1\right)$ is a martingale (with respect to its natural filtration $\left.\mathcal{F}_{n}=\sigma\left(M_{0}, \ldots, M_{n}\right), n \geq 0\right)$.
Answer: Incorrect: $\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\frac{M_{n}+M_{n-1}}{2} \neq M_{n}$.

Exercise 2. (15 points)

Hint for this exercise: For any $a, b \in \mathbb{C}$ and $n \geq 1,(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$ and $e^{z} \simeq 1+z$ when $z \in \mathbb{C}$ and $|z|$ is small.

Let $\left(B_{n}, n \geq 1\right)$ be a sequence of random variables such that

$$
\mathbb{P}\left(\left\{B_{n}=\frac{k}{n}\right\}\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } 0 \leq k \leq n
$$

where $0<p<1$ is a fixed parameter.
a) Compute $\mathbb{E}\left(B_{n}\right)$ and $\operatorname{Var}\left(B_{n}\right)$ for $n \geq 1$. (Note: You might use "well known" formulas here.)

Answer: (5 points) $n B_{n}$ is a $\operatorname{Binomial}(n, p)$ random variable, so

$$
\mathbb{E}\left(B_{n}\right)=\frac{n p}{n}=p \quad \text { and } \quad \operatorname{Var}\left(B_{n}\right)=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}
$$

b) Compute the characteristic function $\phi_{B_{n}}(t)$ for $t \in \mathbb{R}$ and $n \geq 1$.

Answer: (5 points) Using the same argument (or via an explicit computation using the hint):

$$
\phi_{B_{n}}(t)=\phi_{n B_{n}}(t / n)=\left(p e^{i t / n}+(1-p)\right)^{n}
$$

c) To what limiting random variable B does the sequence ($B_{n}, n \geq 1$) converge in distribution? Justify your reasoning.

Answer: (5 points) Using b) together with the criterion that convergence in distribution holds if and only if the respective characteristic functions converge, we find:

$$
\phi_{B_{n}}(t)=\left(p e^{i t / n}+(1-p)\right)^{n} \simeq\left(p\left(1+\frac{i t}{n}\right)+1-p\right)^{n}=\left(1+\frac{i t p}{n}\right)^{n} \underset{n \rightarrow \infty}{\rightarrow} e^{i t p}
$$

which is the characteristic function of the constant random variable $B=p$.

Exercise 3. (21 points + BONUS 3 points)

Let X, Y be two random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and such that

$$
\begin{array}{ll}
\mathbb{P}(\{X=+1, Y=+1\})=p-\frac{q}{2} & \mathbb{P}(\{X=+1, Y=-1\})=\frac{q}{2} \\
\mathbb{P}(\{X=-1, Y=+1\})=\frac{q}{2} & \mathbb{P}(\{X=-1, Y=-1\})=1-p-\frac{q}{2}
\end{array}
$$

where $0 \leq q \leq 1$ and $\frac{q}{2} \leq p \leq 1-\frac{q}{2}$ are fixed parameters.
a) Compute all values of p and q for which X and Y are independent.

Answer: (5 points) $\mathbb{P}(\{X=+1\})=p$ and $\mathbb{P}(\{Y=+1\})=p$, so to obtain independence, we need:

$$
p^{2}=p-\frac{q}{2} \quad \text { i.e. } \quad q \in[0,1 / 2] \quad \text { and } \quad p=\frac{1 \pm \sqrt{1-2 q}}{2}
$$

(and one checks that the above p indeed satisfies $q / 2 \leq p \leq 1-q / 2$).
b) Compute $\mathbb{P}(\{X=x\} \mid\{X+Y=z\})$ for all possible values of x and z (and all possible p, q).

Answer: (5 points) For $X+Y= \pm 2$, we necessarily have $X= \pm 1$, so

$$
\mathbb{P}(\{X=+1\} \mid\{X+Y=+2\})=1 \quad \text { and } \quad \mathbb{P}(\{X=-1\} \mid\{X+Y=-2\})=1
$$

For $X+Y=0$, we have

$$
\begin{aligned}
\mathbb{P}(\{X=+1\} \mid\{X+Y=0\}) & =\frac{\mathbb{P}(\{X=+1, X+Y=0,\})}{\mathbb{P}(\{X+Y=0\})} \\
& =\frac{\mathbb{P}(\{X=+1, Y=-1\})}{\mathbb{P}(\{X=+1, Y=-1\})+\mathbb{P}(\{X=-1, Y=+1\})}=\frac{q / 2}{q / 2+q / 2}=\frac{1}{2}
\end{aligned}
$$

and similarly $\mathbb{P}(\{X=-1\} \mid\{X+Y=0\})=\frac{1}{2}$.
c) Compute $\mathbb{E}(X \mid X+Y)$ and $C=\mathbb{E}\left((X-\mathbb{E}(X \mid X+Y))^{2}\right)$.

Answer: (5 points) We find that

$$
\mathbb{E}(X \mid\{X+Y=j\})=\left\{\begin{array}{ll}
+1 & \text { if } j=+2 \\
0 & \text { if } j=0 \\
-1 & \text { if } j=-2
\end{array}=\frac{j}{2}\right.
$$

so $\mathbb{E}(X \mid X+Y)=\frac{X+Y}{2}$ and

$$
C=\mathbb{E}\left((X-\mathbb{E}(X \mid X+Y))^{2}\right)=\mathbb{E}\left(\left(\frac{X-Y}{2}\right)^{2}\right)=\frac{q}{2}+\frac{q}{2}=q
$$

BONUS d) Does there exist a square-integrable random variable $U=f(X+Y)$ (with $f: \mathbb{R} \rightarrow \mathbb{R}$ Borel-measurable) such that $\mathbb{E}\left((X-U)^{2}\right)<C$? If yes, exhibit such a random variable U and compute $\mathbb{E}\left((X-U)^{2}\right)$; if not, justify why.

Answer: (3 points, 1 for the answer, 2 for the justification)
No: the conditional expectation $\mathbb{E}(X \mid X+Y)$ is by definition the random variable which minimizes $\mathbb{E}\left((X-U)^{2}\right)$ among all $\sigma(X+Y)$-measurable and square-integrable random variables U.

Consider now $\left(\left(X_{n}, Y_{n}\right), n \geq 1\right)$ a sequence of independent random vectors defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\left(X_{n}, Y_{n}\right)$ has the same distribution as (X, Y) above, for every $n \geq 1$.
Let also, for $n \geq 1, Z_{n}=X_{n}+Y_{n}, \mathcal{F}_{n}=\sigma\left(Z_{1}, \ldots, Z_{n}\right), R_{n}=\sum_{j=1}^{n} X_{j}$ and $S_{n}=\sum_{j=1}^{n} Z_{j}$.
e) For $n \geq 1$, compute $\mathbb{E}\left(R_{n} \mid \mathcal{F}_{n}\right)$ and $\mathbb{E}\left(R_{n} \mid S_{n}\right)$.

Answer: (6 points) By independence and part c), we obtain

$$
\mathbb{E}\left(R_{n} \mid \mathcal{F}_{n}\right)=\sum_{j=1}^{n} \mathbb{E}\left(X_{j} \mid \mathcal{F}_{n}\right)=\sum_{j=1}^{n} \mathbb{E}\left(X_{j} \mid Z_{j}\right)=\sum_{j=1}^{n} \frac{Z_{j}}{2}=\frac{S_{n}}{2}
$$

and therefore, by the towering property of conditional expectation:

$$
\mathbb{E}\left(R_{n} \mid S_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(R_{n} \mid \mathcal{F}_{n}\right) \mid S_{n}\right)=\mathbb{E}\left(\left.\frac{S_{n}}{2} \right\rvert\, S_{n}\right)=\frac{S_{n}}{2}
$$

Exercise 4. (18 points + BONUS 3 points)

Hint for this exercise: For $0<a<1, \sum_{j \geq 1} a^{j}=\frac{a}{1-a}$.
Let $\left(U_{n}, n \geq 1\right)$ and ($V_{n}, n \geq 1$) be two independent sequences of i.i.d. random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{P}\left(\left\{U_{1}=1\right\}\right)=p=1-\mathbb{P}\left(\left\{U_{1}=0\right\}\right)$ and $\mathbb{P}\left(\left\{V_{1}=1\right\}\right)=q=1-\mathbb{P}\left(\left\{V_{1}=0\right\}\right)$, where $0 \leq p, q \leq 1$ are fixed parameters.
Let also $W_{0}=0$ and $W_{n}=\sum_{j=1}^{n} \frac{U_{j}+V_{j}}{3^{j}}$, for $n \geq 1$.
a) Show that $W=\lim _{n \rightarrow \infty} W_{n}$ exists a.s. and that $\lim _{n \rightarrow \infty} \mathbb{E}\left(\left(W_{n}-W\right)^{2}\right)=0$.

Answer: (5 points) For every $\omega \in \Omega, W_{n}(\omega)$ is a Cauchy sequence, as for $n \geq m \geq 1$

$$
0 \leq W_{n}(\omega)-W_{m}(\omega)=\sum_{j=m+1}^{n} \frac{U_{j}(\omega)+V_{j}(\omega)}{3^{j}} \leq 2 \sum_{j \geq m+1} \frac{1}{3^{j}}=\frac{1}{3^{m}} \underset{m \rightarrow \infty}{\rightarrow} 0
$$

so the sequence $W_{n}(\omega)$ converges for every $\omega \in \Omega$. Moreover, by independence,

$$
\begin{aligned}
\mathbb{E}\left(\left(W_{n}-W\right)^{2}\right) & =\operatorname{Var}\left(W_{n}-W\right)+\mathbb{E}\left(\left(W_{n}-W\right)^{2}\right)=\sum_{j \geq n+1} \operatorname{Var}\left(\frac{U_{j}+V_{j}}{3^{j}}\right)+\left(\sum_{j \geq n+1} \frac{\mathbb{E}\left(U_{j}+V_{j}\right)}{3^{j}}\right)^{2} \\
& \leq \sum_{j \geq n+1} \frac{4}{3^{2 j}}+\left(\sum_{j \geq n+1} \frac{2}{3^{j}}\right)^{2}
\end{aligned}
$$

which converges to 0 as $n \rightarrow \infty$ for the same reasons as above.
b) For a given $n \geq 1$, compute $\mathbb{E}\left(W \mid \mathcal{F}_{n}\right)-W_{n}$, where $\mathcal{F}_{n}=\sigma\left(U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{n}\right)$.

Answer: (3 points) Using again independence, we find:

$$
\mathbb{E}\left(W \mid \mathcal{F}_{n}\right)-W_{n}=W_{n}+\mathbb{E}\left(\sum_{j \geq n+1} \frac{U_{j}+V_{j}}{3^{j}}\right)-W_{n}=(p+q) \sum_{j \geq n+1} \frac{1}{3^{j}}=\frac{p+q}{2} \frac{1}{3^{n}}
$$

BONUS c) Are there values of p, q such that W is a uniform random variable on $[0,1]$? If yes, compute these values; if not, justify why.

Answer: (3 points, 1 for the answer, 2 for the justification)
No: To obtain a uniform W, we would need $U_{1}+V_{1}$ to be uniformly distributed on $\{0,1,2\}$. But this would mean

$$
1 / 3=p q=p(1-q)+q(1-p)=(1-p)(1-q)
$$

and there are no values of p and q in $[0,1]$ satisfying these 3 equalities at once.

Let now $\mathcal{G}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{G}_{n}=\sigma\left(U_{1}, \ldots, U_{n}\right)$ for $n \geq 1$.
d) Compute $M_{n}=\mathbb{E}\left(W \mid \mathcal{G}_{n}\right)$ for $n \geq 0$.

Answer: (4 points) As the V 's are independent of \mathcal{G}_{n}, we obtain

$$
\begin{aligned}
M_{n} & =\mathbb{E}\left(W \mid \mathcal{G}_{n}\right)=\sum_{j=1}^{n} \frac{U_{j}}{3^{j}}+\mathbb{E}\left(\sum_{j \geq n+1} \frac{U_{j}}{3^{j}}\right)+\mathbb{E}\left(\sum_{j \geq 1} \frac{V_{j}}{3^{j}}\right) \\
& =\sum_{j=1}^{n} \frac{U_{j}}{3^{j}}+\frac{p}{3^{n}} \frac{1}{2}+\frac{q}{2}
\end{aligned}
$$

e) Explain why there exists a random variable M_{∞} such that $M_{n} \underset{n \rightarrow \infty}{ } M_{\infty}$ almost surely, and compute M_{∞}.

Answer: (3 points) M is a non-negative martingale, so by the martingale convergence theorem (version 2), the a.s. limit M_{∞} exists. Using the above formula, we find moreover that

$$
M_{\infty}=\sum_{j \geq 1} \frac{U_{j}}{3^{j}}+\frac{q}{2}
$$

f) Does it also hold that $\mathbb{E}\left(M_{\infty} \mid \mathcal{F}_{n}\right)=M_{n}$ for every $n \geq 0$? Justify your answer.

Answer: (3 points, 1 for the answer, 2 for the justification)
Yes, it does, as $\mathbb{E}\left(M_{\infty} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(M_{\infty} \mid \mathcal{G}_{n}\right)$ and

$$
\sup _{n \geq 1} \mathbb{E}\left(M_{n}^{2}\right)=\sup _{n \geq 1} \mathbb{E}\left(\mathbb{E}\left(W \mid \mathcal{G}_{n}\right)^{2}\right) \stackrel{(*)}{\leq} \sup _{n \geq 1} \mathbb{E}\left(\mathbb{E}\left(W^{2} \mid \mathcal{G}_{n}\right)\right)=\sup _{n \geq 1} \mathbb{E}\left(W^{2}\right)=\mathbb{E}\left(W^{2}\right)<+\infty
$$

where $(*)$ follows from Jensen's inequality for conditional expectation. So the first version of the martingale convergence theorem applies.

