Final Exam

Note: Please pay attention to the presentation of your answers! (3 points)

Exercise 1. Quiz. (18 points)

For each assertion below, state whether it is correct or not (1 point) and provide a short justification for your answer (2 points).
a) Let A, B be two generic subsets of Ω. Then $\sigma(A, B)=\sigma(A, B \backslash A)$.
b) If the random variables X, Y, Z satisfy $\sigma(X) \Perp \sigma(Y)$ and $\sigma(X) \Perp \sigma(Z)$, then $\sigma(X) \Perp \sigma(Y, Z)$.
c) Let F be a generic cdf. Then $G(t)=\left\{\begin{array}{ll}1 /(1-\log (F(t))), & \text { if } F(t)>0, \\ 0, & \text { if } F(t)=0,\end{array}\right.$ is necessarily also a cdf.
d) The function $\phi(t)=\left\{\begin{array}{ll}1, & \text { if }|t| \leq 1, \\ 0, & \text { if }|t|>1,\end{array}\right.$ is the characteristic function of a random variable X.
e) Let X, Y be two i.i.d. $\mathcal{N}(0,1)$ random variables and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous and bounded function. Then $f(X+Y)$ and $f(X-Y)$ are independent.
f) Let $\left(X_{n}, n \geq 2\right)$ be a sequence of i.i.d. $\mathcal{N}(0,1)$ random variables and $\left(M_{n}, n \in \mathbb{N}\right)$ be the process defined recursively as follows:

$$
M_{0}=M_{1}=0, \quad M_{n+1}=\frac{M_{n}+M_{n-1}}{2}+X_{n+1}, \quad \text { for } n \geq 1 .
$$

Then $\left(M_{n}, n \geq 1\right)$ is a martingale (with respect to its natural filtration $\left.\mathcal{F}_{n}=\sigma\left(M_{0}, \ldots, M_{n}\right), n \geq 0\right)$.

Exercise 2. (15 points)

Hints for this exercise: For any $a, b \in \mathbb{C}$ and $n \geq 1,(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$ and $e^{z} \simeq 1+z$ when $z \in \mathbb{C}$ and $|z|$ is small.
Let $\left(B_{n}, n \geq 1\right)$ be a sequence of random variables such that

$$
\mathbb{P}\left(\left\{B_{n}=\frac{k}{n}\right\}\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } 0 \leq k \leq n
$$

where $0<p<1$ is a fixed parameter.
a) Compute $\mathbb{E}\left(B_{n}\right)$ and $\operatorname{Var}\left(B_{n}\right)$ for $n \geq 1$. (Note: You might use "well known" formulas here.)
b) Compute the characteristic function $\phi_{B_{n}}(t)$ for $t \in \mathbb{R}$ and $n \geq 1$.
c) To what limiting random variable B does the sequence ($B_{n}, n \geq 1$) converge in distribution? Justify your reasoning.

Exercise 3. (21 points + BONUS 3 points)

Let X, Y be two random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and such that

$$
\begin{array}{ll}
\mathbb{P}(\{X=+1, Y=+1\})=p-\frac{q}{2} & \mathbb{P}(\{X=+1, Y=-1\})=\frac{q}{2} \\
\mathbb{P}(\{X=-1, Y=+1\})=\frac{q}{2} & \mathbb{P}(\{X=-1, Y=-1\})=1-p-\frac{q}{2}
\end{array}
$$

where $0 \leq q \leq 1$ and $\frac{q}{2} \leq p \leq 1-\frac{q}{2}$ are fixed parameters.
a) Compute all values of p and q for which X and Y are independent.
b) Compute $\mathbb{P}(\{X=x\} \mid\{X+Y=z\})$ for all possible values of x and z (and all possible p, q).
c) Compute $\mathbb{E}(X \mid X+Y)$ and $C=\mathbb{E}\left((X-\mathbb{E}(X \mid X+Y))^{2}\right)$.

BONUS d) Does there exist a square-integrable random variable $U=f(X+Y)$ (with $f: \mathbb{R} \rightarrow \mathbb{R}$ Borel-measurable) such that $\mathbb{E}\left((X-U)^{2}\right)<C$? If yes, exhibit such a random variable U and compute $\mathbb{E}\left((X-U)^{2}\right)$; if not, justify why.

Consider now $\left(\left(X_{n}, Y_{n}\right), n \geq 1\right)$ a sequence of independent random vectors defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\left(X_{n}, Y_{n}\right)$ has the same distribution as (X, Y) above, for every $n \geq 1$.

Let also, for $n \geq 1, Z_{n}=X_{n}+Y_{n}, \mathcal{F}_{n}=\sigma\left(Z_{1}, \ldots, Z_{n}\right), R_{n}=\sum_{j=1}^{n} X_{j}$ and $S_{n}=\sum_{j=1}^{n} Z_{j}$.
e) For $n \geq 1$, compute $\mathbb{E}\left(R_{n} \mid \mathcal{F}_{n}\right)$ and $\mathbb{E}\left(R_{n} \mid S_{n}\right)$.

Exercise 4. (18 points + BONUS 3 points)

Hint for this exercise: For $0<a<1, \sum_{j \geq 1} a^{j}=\frac{a}{1-a}$.
Let $\left(U_{n}, n \geq 1\right)$ and $\left(V_{n}, n \geq 1\right)$ be two independent sequences of i.i.d. random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{P}\left(\left\{U_{1}=1\right\}\right)=p=1-\mathbb{P}\left(\left\{U_{1}=0\right\}\right)$ and $\mathbb{P}\left(\left\{V_{1}=1\right\}\right)=q=1-\mathbb{P}\left(\left\{V_{1}=0\right\}\right)$, where $0 \leq p, q \leq 1$ are fixed parameters.

Let also $W_{0}=0$ and $W_{n}=\sum_{j=1}^{n} \frac{U_{j}+V_{j}}{3^{j}}$, for $n \geq 1$.
a) Show that $W=\lim _{n \rightarrow \infty} W_{n}$ exists a.s. and that $\lim _{n \rightarrow \infty} \mathbb{E}\left(\left(W_{n}-W\right)^{2}\right)=0$.
b) For a given $n \geq 1$, compute $\mathbb{E}\left(W \mid \mathcal{F}_{n}\right)-W_{n}$, where $\mathcal{F}_{n}=\sigma\left(U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{n}\right)$.

BONUS c) Are there values of p, q such that W is a uniform random variable on $[0,1]$? If yes, compute these values; if not, justify why.

Let now $\mathcal{G}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{G}_{n}=\sigma\left(U_{1}, \ldots, U_{n}\right)$ for $n \geq 1$.
d) Compute $M_{n}=\mathbb{E}\left(W \mid \mathcal{G}_{n}\right)$ for $n \geq 0$.
e) Explain why there exists a random variable M_{∞} such that $M_{n} \underset{n \rightarrow \infty}{\rightarrow} M_{\infty}$ almost surely, and compute M_{∞}.
f) Does it also hold that $\mathbb{E}\left(M_{\infty} \mid \mathcal{F}_{n}\right)=M_{n}$ for every $n \geq 0$? Justify your answer.

