The amount of details I write down is to be considered as sufficient to get full points.
Exercice 1. 1. Let k be a field. We consider the following subsets of the matrix $\operatorname{ring} \operatorname{Mat}(k, 3)$:

$$
I=\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
b & 0 & 0 \\
c & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in k\right\}, \quad I=\left\{\left.\left(\begin{array}{ccc}
a & a^{\prime} & 0 \\
b & b^{\prime} & 0 \\
c & c^{\prime} & 0
\end{array}\right) \right\rvert\, a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in k\right\}
$$

Clearly they are subgroups of $\operatorname{Mat}(k, 3)$ (no justification needed here). There are also leftideals. This can be checked by an explicit calculation (which is needed) - or we can interpret $\operatorname{Mat}(k, 3)$ as the ring $E:=\operatorname{End}_{k}\left(k^{\oplus 3}\right)$ of k-linear endomorphisms of $k^{\oplus 3}$ written in the standard basis $\left(e_{1}, e_{2}, e_{3}\right)$, and then $I=\left\{\phi \in A \mid \phi\left(e_{3}\right)=0\right\}$ and $J=\left\{\phi \in A \mid \phi\left(e_{2}\right)=\right.$ $\left.\phi\left(e_{3}\right)=0\right\}$. Left-multiplication corresponds to post-composition, and clearly the defining properties of I and J are preserved by post-composition.
Now $I \cap J=I$, while

$$
I J \ni\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \notin I
$$

2. Let $\xi:=\operatorname{ev}_{x=y^{2}}: F[x, y, z]=F[y, z][x] \rightarrow F[y, z]$ be the evaluation morphism given by $x \mapsto y^{2}$. By Exemple 1.4.10, it holds that $\operatorname{ker} \xi=\left(x-y^{2}\right)$. Then we have the sequence of isomorphisms

$$
\frac{F[x, y, z]}{\left(x-y^{2}, y^{3}+z^{4}\right)} \cong \frac{F[x, y, z] /\left(x-y^{2}\right)}{\left(\xi\left(y^{3}+x^{4}\right)\right)} \cong \frac{F[y, z]}{\left(y^{3}+z^{4}\right)}
$$

where the first isomorphism is given by the Quotient en deux temps (Proposition 1.4.41), the second one by the First isomorphism theorem.

Exercice 2. 1. Since E is a field with q elements, the multiplicative group $E^{\times}=E \backslash\{0\}$ has $q-1$ elements. By Lagrange's theorem in group theory, we obtain that

$$
\alpha^{q-1}=1 \quad \forall \alpha \in E^{\times} .
$$

Thus every element α of E^{\times}satisfies $\alpha^{q}=\alpha$. Of course this is also verified if $\alpha=0$. Thus every element of E is a root of $x^{q}-x$. It follows that $f(x):=\prod_{\alpha \in E}(x-\alpha)$ divides $x^{q}-x$. But f and $x^{q}-x$ have the same degree and are both monic, thus there are equal. In particular $x^{q}-x$ splits completely in E. If $E^{\prime} \subseteq E$ is a subfield where $x^{q}-x$ also splits completely, then by the UFD property of $E[x]$ we would have $x-\alpha \in E^{\prime}[x]$ for every $\alpha \in E^{\prime}$, and thus $E^{\prime}=E$. Hence E is a splitting field of $x^{q}-x$.
2. Let $E:=\left\{\alpha \in L \mid \alpha^{q}-\alpha=0\right\}$ be the set of roots of $x^{q}-x$ in L. We claim that E is a subfield. Indeed, for $\alpha, \beta \in E$:
(a) Clearly $0,1 \in E$. If q is odd then $(-1)^{q}=-1$ so $(-1)^{q}-(-1)=0$. If q is even then $-1=1$. Thus $-1 \in E$.
(b) $(\alpha \beta)^{q}-\alpha \beta=\alpha^{q} \beta^{q}-\alpha \beta=\alpha\left(\beta^{q}-\beta\right)=0$ so $\alpha \beta \in E$.
(c) $(\alpha+\beta)^{q}-(\alpha+\beta)=\alpha^{q}+\beta^{q}-\alpha-\beta=0$ since binomial coefficients divisible by p are zero in E. Thus $\alpha+\beta \in E$.
(d) $-\alpha=(-1) \cdot \alpha \in E$.
(e) If $\alpha \neq 0$, then from $\alpha^{q}=\alpha$ we get $\alpha^{q-1}=1$ and so $\alpha^{-1}=\alpha^{q-2} \in E$.

Since L is a splitting field of $x^{q}-x$ and $x^{q}-x=\prod_{\alpha \in E}(x-\alpha)$ by definition of E, we must have $L=E$ by minimality of L. The derivative of $x^{q}-x$ is -1 , so by Corollaire 3.4.12 the polynomial $x^{q}-x$ has q distinct roots in L. Thus $|L|=q$.

Exercice 3. 1. We have $F(1)=1$ and $F(\alpha)=\alpha^{2}=\alpha+1$, thus the matrix of F is

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

2. We have $F(1)=1, F(\beta)=\beta^{2}$ and $F\left(\beta^{2}\right)=\beta^{4}=\beta \cdot \beta^{3}=\beta^{2}+\beta$, so the matrix of F is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Exercice 4.

Fixons quelques notations. N'importe quel élément non-nul $0 \neq f \in F[[t]]$ peut s'écrire $f=t^{\nu(f)} u_{f}$, où $u_{f} \in F[[t]]^{\times}$. En effet, si $f=\sum_{i} a_{i} t^{i}$, on mettra en évidence t^{j} avec $j=\min \left\{i \mid a_{i} \neq 0\right\}$. L'entier $\nu(f)$ est uniquement déterminé : car si $t^{a} u=t^{a+k} v$ avec $k \geq 0$ et $u, v \in F[[t]]^{\times}$, on a

$$
t^{a}\left(u-t^{k} v\right)=0
$$

et comme $F[[t]]$ est intègre, on obtient $u=t^{k} v$, donc $k=0$.
Notons que f est inversible si et seulement si $\nu(f)=0$, et que $\nu(f g)=\nu(f)+\nu(g)$.
On prétend que f est irréductible si et seulement si $\nu(f)=1$. Si f est irréductible, alors f n'est pas inversible, donc $\nu(f)>0$. Si $\nu(f) \geq 2$, alors $f=t \cdot t^{\nu(f)-1} u_{f}$ montre que f n'est pas irréductible ; donc $\nu(f)=1$. Inversément, si $\nu(f)=1$ et que $f=x y$, on a $\nu(x)+\nu(y)=1$ et donc l'un de $\nu(x), \nu(y)$ est nul, et ainsi l'un de x, y est inversible.

Puisque t est ainsi irréductible, l'écriture $f=t^{\nu(f)} u_{f}$ est une décomposition en facteurs irréductibles. Concernant l'unicité, supposons que l'on puisse écrire $f=\prod_{i} g_{i}^{a_{i}}$, où les g_{i} sont irréductibles. Alors on peut écrire $g_{i}=t u_{i}$, où les u_{i} sont inversibles. On a alors $f=t^{\sum_{i} a_{i}} \prod_{i} a_{i}$. L'argument qui montre que $\nu(\bullet)$ est bien défini, montre que $\sum_{i} a_{i}=\nu(f)$, et il s'ensuit que $\prod_{i} u_{i}=u_{f}$. Ceci prouve l'unicité.

Exercice 5.

We verify that in $\mathbb{F}_{3}[x]$ one has $2 x^{2}+1=-(x-1)(x+1)$. Let $J_{1}=(x-1), J_{2}=(x+1)$. Then $J_{1} \cap J_{2}=J_{1} J_{2}=\left(2 x^{2}+1\right)$, while $J_{1}+J_{2}=\mathbb{F}_{3}[x]$ since it contains the invertible element $2=(x+1)-(x-1)$.

Hence by the Chinese Remainder theorem (Théorème 1.4.50), the map

$$
\xi:=\left(\mathrm{ev}_{1}, \mathrm{ev}_{-1}\right): A=\mathbb{F}_{3}[x] /\left(2 x^{2}+1\right) \longrightarrow \mathbb{F}_{3}[x] /(x-1) \times \mathbb{F}_{3}[x] /(x+1) \cong \mathbb{F}_{3} \times \mathbb{F}_{3}
$$

is a ring isomorphism.

1. $\xi\left(x^{3}+2\right)=\left(1^{3}+2,(-1)^{3}+2\right)=(0,1)$ so $\xi\left(x^{3}+2\right)$ is not invertible. Hence the class of $x^{3}+2$ is not invertible in A.
2. Since ξ is a ring isomorphism we have $A^{\times} \cong\left(\mathbb{F}_{3} \times \mathbb{F}_{3}\right)^{\times}$. It is easy to see that

$$
\left(\mathbb{F}_{3} \times \mathbb{F}_{3}\right)^{\times}=\mathbb{F}_{3}^{\times} \times \mathbb{F}_{3}^{\times}
$$

and $\left|\mathbb{F}_{3}^{\times}\right|=2$, so $\left|A^{\times}\right|=4$.

Exercice 6.

Consider the subgroup $H:=\langle(123)\rangle \leq A_{4}$. Then by the Galois correspondence we get an intermediate extension $K \subset L^{H} \subset L$ such that $\left[L: L^{H}\right]=|H|=3$. This implies that

$$
\left[L^{H}: K\right]=\frac{[L: K]}{\left[L: L^{H}\right]}=\frac{\left|A_{4}\right|}{|H|}=\frac{12}{3}=4
$$

If $\alpha \in L^{H}$ then we can consider α as an element of L and thus $m_{\alpha, K}$ is separable over K, since the extension $K \subset L$ is separable (Proposition 3.6.10). Hence the extension $K \subset L^{H}$ is separable. It is also finite, thus by the Primitive element theorem (Théorème 3.5.10) there exists $a \in L^{H}$ such that $L^{H}=K(a)$.

We have $\operatorname{deg} m_{a, K}=[K(a): K]=4$. We claim that $K(a)$ is not a splitting field of $m_{a, K}$. If it was, then by Théorème 3.6.15 the extension $K \subset K(a)$ would be Galois. By the Fundamental theorem (Théorème 3.6.18), we would obtain that H is a normal subgroup of A_{4}. But it is not, for

$$
(12)(34)(123)(12)(34)=(142) \notin A_{4} .
$$

Since $m_{a, K}$ splits over L (Proposition 3.6.10), it contains a splitting field of $m_{a, K}$ over K, say $K \subset E \subset L$. We have $K(a) \subset L$, and equality does not hold since $K(a)$ is not the splitting field of $m_{a, K}$. Therefore

$$
3=[L: K(a)]=[L: E] \underbrace{[E: K(a)]}_{>1}
$$

and we deduce that $[L: E]=1$, which means $L=E$.
Therefore L is the splitting of the polynomial $m_{a, K}$, which has degree 4 .

