1) Define Σ^{\dagger} as the $N \times M$ diagonal matrix with diagonal entries:

$$
\forall i \in\{1,2, \ldots, \min \{M, N\}\}:\left(\Sigma^{\dagger}\right)_{i i}\left\{\begin{array}{cc}
1 / \Sigma_{i i} & \text { if } \quad \Sigma_{i i} \neq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then both $\Sigma^{\dagger} \Sigma \in \mathbb{C}^{N \times N}$ and $\Sigma \Sigma^{\dagger} \in \mathbb{C}^{M \times M}$ are diagonal square matrices with diagonal entries:

$$
\begin{aligned}
& \forall i \in[N]:\left(\Sigma^{\dagger} \Sigma\right)_{i i}= \begin{cases}1 & \text { if } \quad i \leq \min \{M, N\} \text { and } \Sigma_{i i} \neq 0 \\
0 & \text { otherwise }\end{cases} \\
& \forall i \in[M]:\left(\Sigma \Sigma^{\dagger}\right)_{i i}= \begin{cases}1 & \text { if } i \leq \min \{M, N\} \text { and } \Sigma_{i i} \neq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

It is then easy to check that Σ^{\dagger} satisfies the first two conditions of the Moore-Penrose pseudoinverse: $\Sigma \Sigma^{\dagger} \Sigma=\Sigma$ and $\Sigma^{\dagger} \Sigma \Sigma^{\dagger}=\Sigma^{\dagger}$. Besides, $\Sigma^{\dagger} \Sigma$ and $\Sigma \Sigma^{\dagger}$ being real diagonal matrices, the last two conditions are clearly satisfied too.
2) We can check that the matrix $V \Sigma^{\dagger} U^{*}$ satisfies the four conditions of the Moore-Penrose pseudoinverse, i.e., $A^{\dagger}=V \Sigma^{\dagger} U^{*}$:

$$
\begin{array}{r}
A\left[V \Sigma^{\dagger} U^{*}\right] A=U \Sigma\left(V^{*} V\right) \Sigma^{\dagger}\left(U^{*} U\right) \Sigma V^{*}=U \Sigma \Sigma^{\dagger} \Sigma V^{*}=U \Sigma V^{*}=A \\
{\left[V \Sigma^{\dagger} U^{*}\right] A\left[V \Sigma^{\dagger} U^{*}\right]=V \Sigma^{\dagger}\left(U^{*} U\right) \Sigma\left(V^{*} V\right) \Sigma^{\dagger} U^{*}=V \Sigma^{\dagger} \Sigma \Sigma^{\dagger} U^{*}=V \Sigma^{\dagger} U^{*}} \\
\left(A V \Sigma^{\dagger} U^{*}\right)^{*}=\left(U \Sigma \Sigma^{\dagger} U^{*}\right) *=U\left(\Sigma \Sigma^{\dagger}\right)^{*} U^{*}=U \Sigma \Sigma^{\dagger} U^{*}=A V \Sigma^{\dagger} U^{*} \\
\left(V \Sigma^{\dagger} U^{*} A\right)^{*}=\left(V \Sigma^{\dagger} \Sigma V^{*}\right) *=V\left(\Sigma^{\dagger} \Sigma\right)^{*} V^{*}=V \Sigma^{\dagger} \Sigma V^{*}=V \Sigma^{\dagger} U^{*} A
\end{array}
$$

3) A is full column rank, therefore $A^{*} A$ is a full rank $N \times N$ matrix and has a unique inverse $\left(A^{*} A\right)^{-1}$. The matrix $\left(A^{*} A\right)^{-1} A^{*}$ satisfies the four conditions:

$$
\begin{gathered}
A\left[\left(A^{*} A\right)^{-1} A^{*}\right] A=A ;\left[\left(A^{*} A\right)^{-1} A^{*}\right] A\left[\left(A^{*} A\right)^{-1} A^{*}\right]=\left(A^{*} A\right)^{-1} A^{*} ; \\
\left(A\left[\left(A^{*} A\right)^{-1} A^{*}\right]\right)^{*}=A\left[\left(A^{*} A\right)^{-1} A^{*}\right] ;\left(\left[\left(A^{*} A\right)^{-1} A^{*}\right] A\right)^{*}=A^{*} A\left(A^{*} A\right)^{-1}=I_{N \times N}=\left(\left[\left(A^{*} A\right)^{-1} A^{*}\right] A\right.
\end{gathered}
$$

Hence $A^{\dagger}=\left(A^{*} A\right)^{-1} A^{*}$.
4) A is full row rank, therefore $A A^{*}$ is a full rank $M \times M$ matrix and has a unique inverse $\left(A A^{*}\right)^{-1}$. The matrix $A^{*}\left(A A^{*}\right)^{-1}$ satisfies the four conditions:

$$
\begin{gathered}
A\left[A^{*}\left(A A^{*}\right)^{-1}\right] A=A ;\left[A^{*}\left(A A^{*}\right)^{-1}\right] A\left[A^{*}\left(A A^{*}\right)^{-1}\right]=A^{*}\left(A A^{*}\right)^{-1} \\
\left(A\left[A^{*}\left(A A^{*}\right)^{-1}\right]\right)^{*}=\left(A A^{*}\right)^{-1} A A^{*}=I_{M \times M}=A A^{\dagger} ;\left(\left[A^{*}\left(A A^{*}\right)^{-1}\right] A\right)^{*}=A^{*}\left(A A^{*}\right)^{-1} A
\end{gathered}
$$

Hence $A^{\dagger}=A^{*}\left(A A^{*}\right)^{-1}$.
5) We have $A A^{-1} A=A, A^{-1} A A^{-1}=A^{-1},\left(A A^{-1}\right)^{*}=I_{M \times M}=A A^{-1},\left(A^{-1} A\right)^{*}=I_{N \times N}=A^{-1} A$. Hence $A^{\dagger}=A^{-1}$.
6) A is full column rank so $A^{\dagger} A=I_{M \times M}$ and B is full column rank so $B B^{\dagger}=I_{N \times N}$. Therefore:

$$
\begin{array}{r}
(A B)\left(B^{\dagger} A^{\dagger}\right)(A B)=A\left(B B^{\dagger}\right)\left(A^{\dagger} A\right) B=A I_{M \times M} I_{N \times N} B=A B ; \\
\left(B^{\dagger} A^{\dagger}\right)(A B)\left(B^{\dagger} A^{\dagger}\right)=B^{\dagger}\left(A^{\dagger} A\right)\left(B B^{\dagger}\right) A^{\dagger}=B^{\dagger} I_{N \times N} I_{M \times M} A^{\dagger}=B^{\dagger} A^{\dagger} ; \\
\left(A B B^{\dagger} A^{\dagger}\right)^{*}=\left(A I_{N \times N} A^{\dagger}\right)^{*}=\left(A A^{\dagger}\right)^{*}=A A^{\dagger}=(A B)\left(B^{\dagger} A^{\dagger}\right) ; \\
\left(B^{\dagger} A^{\dagger} A B\right)^{*}=\left(B^{\dagger} I_{M \times M} B\right)^{*}=\left(B^{\dagger} B\right)^{*}=B^{\dagger} B=\left(B^{\dagger} A^{\dagger}\right)(A B) .
\end{array}
$$

Hence $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.

