Midterm exam

Exercise 1. Quiz. (18 points)

Answer each yes/no question below (1 pt) and provide a short justification for your answer (2 pts).
a) Let \mathcal{F} be a σ-field on Ω and \mathcal{G}, \mathcal{H} be two sub- σ-fields of \mathcal{F}.
a1) Does it always hold that $\mathcal{G} \cap \mathcal{H}$ is a σ-field ?
Note: $\mathcal{G} \cap \mathcal{H}$ is by definition the list of subsets of Ω belonging to both \mathcal{G} and \mathcal{H}.
a2) Does it always hold that $\mathcal{G} \cup \mathcal{H}$ is a σ-field?
Note: $\mathcal{G} \cup \mathcal{H}$ is by definition the list of subsets of Ω belonging to either \mathcal{G} or \mathcal{H}.
b) Let X, Y, Z be three random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
b1) Does it always hold that $\sigma(X, Y, Z)=\sigma(X+Y, Y+Z, Z+X)$?
b2) If $\sigma(X+Y+Z)=\sigma(X, Y, Z)$, does that necessarily imply that X, Y, Z are independent?
c) Let X be a continuous random variable and Y be a discrete random variable which is independent of X and also such that $Y(\omega) \neq 0$ for all $\omega \in \Omega$. Let finally $Z=X \cdot Y$.
c1) Is it always the case that Z is a continuous random variable?
c2) Assume now that $X \sim \mathcal{N}(0,1)$ and $\mathbb{P}(\{Y=+1\})=\mathbb{P}(\{Y=+2\})=\frac{1}{2}$. Is Z a Gaussian random variable in this case?

Exercise 2. (15 points)

a) Let $\lambda>0$ and $X \sim \mathcal{E}(\lambda)$, i.e., $p_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$. What is the distribution of $Y=\mu X$, where $\mu>0$?
b) Let X be a discrete random variable taking values in \mathbb{N}^{*} and such that $\mathbb{P}(\{X \geq k\})=\frac{2}{k(k+1)}$ for $k \geq 1$. Compute $\mathbb{E}(X)$.
c) Let X be a $\mathcal{U}([0,1])$ random variable, Y be independent of X and such that $\mathbb{P}(\{Y=+1\})=$ $\mathbb{P}(\{Y=-1\})=\frac{1}{2}$ and $Z=X \cdot Y$. Compute $\phi_{Z}(t) \in \mathbb{R}$ for $t \in \mathbb{R}$.
d) Let X_{1}, X_{2} be two square-integrable random variables such that $\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}-X_{2}\right)$. Compute $\operatorname{Cov}\left(X_{1}, X_{2}\right)$.
e) Does there exist a non-negative random variable X such that $\mathbb{E}(X)=10$ and $\mathbb{E}\left(2^{X}\right)=1000$? Justify your answer.

Exercise 3. (13 points)

Let $n \geq 1$ and X_{1}, \ldots, X_{n} be i.i.d. random variables with common $\operatorname{cdf} F(t)=\exp (-\exp (-t))$ for $t \in \mathbb{R}$.
a) Verify that F is indeed a cdf.
b) Compute both the cdf and the pdf of

$$
Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}-\ln (n)
$$

c) Compute both the cdf and the pdf of

$$
Z_{n}=\min \left\{\exp \left(-X_{1}\right), \ldots, \exp \left(-X_{n}\right)\right\}
$$

Exercise 4. (14 points)
Let $\alpha>0$ and $\left(X_{n}, n \geq 1\right)$ be a sequence of independent random variables such that

$$
\mathbb{P}\left(\left\{X_{n}=+n^{\alpha}\right\}\right)=\mathbb{P}\left(\left\{X_{n}=-n^{\alpha}\right\}\right)=\frac{1}{2 n} \quad \text { and } \quad \mathbb{P}\left(\left\{X_{n}=0\right\}\right)=1-\frac{1}{n} \quad \text { for } n \geq 1
$$

Let also $S_{n}=X_{1}+\ldots+X_{n}$ for $n \geq 1$.
a) Compute $\mathbb{E}\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$, then estimate both quantities as a function of n using the approximation (valid for a generic value of $\gamma \in \mathbb{R}$):

$$
\sum_{j=1}^{n} j^{\gamma} \simeq \int_{1}^{n} d x x^{\gamma}
$$

(as an example, such an approximation allows to estimate $\sum_{j=1}^{n} j \simeq \int_{1}^{n} d x x \simeq \frac{n^{2}}{2}$.)
b) For what values of $\beta>0$ can you show that $\frac{S_{n}}{n^{\beta}} \underset{n \rightarrow \infty}{\stackrel{\mathbb{P}}{\rightarrow}} 0$?
c) For what values of $\beta>0$ can you show that $\frac{S_{n}}{n^{\beta}} \underset{n \rightarrow \infty}{\rightarrow} 0$ almost surely ?

