Advanced Probability and Applications

Midterm exam

Exercise 1. Quiz. (18 points)

Answer each yes/no question below (1 pt) and provide a short justification for your answer (2 pts).

a) Let \mathcal{F} be a σ -field on Ω and \mathcal{G}, \mathcal{H} be two sub- σ -fields of \mathcal{F} .

a1) Does it always hold that $\mathcal{G} \cap \mathcal{H}$ is a σ -field ?

Note: $\mathcal{G} \cap \mathcal{H}$ is by definition the list of subsets of Ω belonging to both \mathcal{G} and \mathcal{H} .

a2) Does it always hold that $\mathcal{G} \cup \mathcal{H}$ is a σ -field ?

Note: $\mathcal{G} \cup \mathcal{H}$ is by definition the list of subsets of Ω belonging to either \mathcal{G} or \mathcal{H} .

b) Let X, Y, Z be three random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

b1) Does it always hold that $\sigma(X, Y, Z) = \sigma(X + Y, Y + Z, Z + X)$?

b2) If $\sigma(X + Y + Z) = \sigma(X, Y, Z)$, does that necessarily imply that X, Y, Z are independent?

c) Let X be a continuous random variable and Y be a discrete random variable which is independent of X and also such that $Y(\omega) \neq 0$ for all $\omega \in \Omega$. Let finally $Z = X \cdot Y$.

c1) Is it always the case that Z is a continuous random variable ?

c2) Assume now that $X \sim \mathcal{N}(0,1)$ and $\mathbb{P}(\{Y = +1\}) = \mathbb{P}(\{Y = +2\}) = \frac{1}{2}$. Is Z a Gaussian random variable in this case ?

Exercise 2. (15 points)

a) Let $\lambda > 0$ and $X \sim \mathcal{E}(\lambda)$, i.e., $p_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$. What is the distribution of $Y = \mu X$, where $\mu > 0$?

b) Let X be a discrete random variable taking values in \mathbb{N}^* and such that $\mathbb{P}(\{X \ge k\}) = \frac{2}{k(k+1)}$ for $k \ge 1$. Compute $\mathbb{E}(X)$.

c) Let X be a $\mathcal{U}([0,1])$ random variable, Y be independent of X and such that $\mathbb{P}(\{Y = +1\}) = \mathbb{P}(\{Y = -1\}) = \frac{1}{2}$ and $Z = X \cdot Y$. Compute $\phi_Z(t) \in \mathbb{R}$ for $t \in \mathbb{R}$.

d) Let X_1, X_2 be two square-integrable random variables such that $Var(X_1 + X_2) = Var(X_1 - X_2)$. Compute $Cov(X_1, X_2)$.

e) Does there exist a non-negative random variable X such that $\mathbb{E}(X) = 10$ and $\mathbb{E}(2^X) = 1000$? Justify your answer.

Exercise 3. (13 points)

Let $n \ge 1$ and X_1, \ldots, X_n be i.i.d. random variables with common cdf $F(t) = \exp(-\exp(-t))$ for $t \in \mathbb{R}$.

a) Verify that F is indeed a cdf.

b) Compute *both* the cdf and the pdf of

$$Y_n = \max\{X_1, \dots, X_n\} - \ln(n)$$

c) Compute *both* the cdf and the pdf of

$$Z_n = \min\{\exp(-X_1), \dots, \exp(-X_n)\}$$

Exercise 4. (14 points)

Let $\alpha > 0$ and $(X_n, n \ge 1)$ be a sequence of independent random variables such that

$$\mathbb{P}(\{X_n = +n^{\alpha}\}) = \mathbb{P}(\{X_n = -n^{\alpha}\}) = \frac{1}{2n} \text{ and } \mathbb{P}(\{X_n = 0\}) = 1 - \frac{1}{n} \text{ for } n \ge 1$$

Let also $S_n = X_1 + \ldots + X_n$ for $n \ge 1$.

a) Compute $\mathbb{E}(S_n)$ and $\operatorname{Var}(S_n)$, then estimate both quantities as a function of n using the approximation (valid for a generic value of $\gamma \in \mathbb{R}$):

$$\sum_{j=1}^{n} j^{\gamma} \simeq \int_{1}^{n} dx \, x^{\gamma}$$

(as an example, such an approximation allows to estimate $\sum_{j=1}^{n} j \simeq \int_{1}^{n} dx \, x \simeq \frac{n^2}{2}$.)

b) For what values of $\beta > 0$ can you show that $\begin{array}{c} S_n \\ n^{\beta} \\ n \to \infty \end{array} \stackrel{\mathbb{P}}{\longrightarrow} 0 \end{array}$?

c) For what values of $\beta > 0$ can you show that $\frac{S_n}{n^{\beta}} \xrightarrow[n \to \infty]{} 0$ almost surely ?