Note: The tensor product is denoted by \otimes. In other words, for vectors $\underline{a}, \underline{b}, \underline{c}$ we have that $\underline{a} \otimes \underline{b}$ is the square array $a^{\alpha} b^{\beta}$ where the superscript denotes the components, and $\underline{a} \otimes \underline{b} \otimes \underline{c}$ is the cubic array $a^{\alpha} b^{\beta} c^{\gamma}$. We often denote components by superscripts because we need the lower index to label vectors themselves.

Problem 1: Moments of Gaussian mixture model (GMM)

Consider the following mixture of Gaussians (we look at the special case where all the covariance matrices are isotropic, equal to $\sigma^{2} I_{D \times D}$):

$$
p(\underline{x})=\sum_{i=1}^{K} w_{i} \frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{D}{2}}} \exp \left(-\frac{\left\|\underline{x}-\underline{a}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

where $\underline{x}, \underline{a}_{i} \in \mathbb{R}^{D}$ are column vectors and the weights $w_{i} \in(0,1]$ satisfy $\sum_{i=1}^{K} w_{i}=1$.

1) For $j \in[D], \underline{e}_{j}$ is the $j^{\text {th }}$ canonical basis vector of \mathbb{R}^{D}. Prove the following identities for the mean vector, the second moment matrix and the third moment tensor:

$$
\begin{aligned}
\mathbb{E}[\underline{x}] & =\sum_{i=1}^{K} w_{i} \underline{a}_{i} ; \\
\mathbb{E}\left[\underline{x}^{T}\right] & =\sigma^{2} I_{D \times D}+\sum_{i=1}^{K} w_{i} \underline{a}_{i} \underline{a}_{i}^{T} \quad ; \\
\mathbb{E}[\underline{x} \otimes \underline{x} \otimes \underline{x}] & =\sum_{i=1}^{K} w_{i} \underline{a}_{i} \otimes \underline{a}_{i} \otimes \underline{a}_{i}+\sigma^{2} \sum_{j=1}^{D} \sum_{i=1}^{K} w_{i}\left(\underline{a}_{i} \otimes \underline{e}_{j} \otimes \underline{e}_{j}+\underline{e}_{j} \otimes \underline{e}_{j} \otimes \underline{a}_{i}+\underline{e}_{j} \otimes \underline{a}_{i} \otimes \underline{e}_{j}\right) .
\end{aligned}
$$

2) Let R be a $K \times K$ orthogonal (rotation) matrix. Define the matrix \widetilde{R} whose entries are $\widetilde{R}_{i j}=\frac{1}{\sqrt{w_{i}}} R_{i j} \sqrt{w_{j}}$, as well as the transformed vectors

$$
\underline{a}_{i}^{\prime}=\sum_{j=1}^{K} \widetilde{R}_{i j} \underline{a}_{j} .
$$

Show that the mixture of Gaussians

$$
p(\underline{x})=\sum_{i=1}^{K} w_{i} \frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{D}{2}}} \exp \left(-\frac{\left\|\underline{x}-\underline{a}_{i}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

has the same second moment matrix as the previous one.

Problem 2: Examples of tensors and their rank

We recall that the rank of a tensor is the minimum possible number of terms in a decomposition of a tensor as a sum of rank-one tensors. Let $e_{0}^{T}=(1,0)$ and $e_{1}^{T}=(0,1)$. Consider the following second-order tensors (also called mode-2 or 2-way tensors):

$$
\begin{aligned}
& B=e_{0} \otimes e_{0}+e_{1} \otimes e_{1} \\
& P=e_{0} \otimes e_{0}+e_{1} \otimes e_{1}+e_{0} \otimes e_{1}+e_{1} \otimes e_{0} \\
& E=e_{0} \otimes e_{0}+e_{1} \otimes e_{1}+e_{0} \otimes e_{1}
\end{aligned}
$$

as well as the third-order tensors (mode-3 or 3 -way):

$$
\begin{aligned}
G & =e_{0} \otimes e_{0} \otimes e_{0}+e_{1} \otimes e_{1} \otimes e_{1} \\
W & =e_{0} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{0} .
\end{aligned}
$$

1) Draw the two and three-dimensional multiarrays for all these tensors.
2) Determine the rank of each tensor (and justify your answer).
3) Let $\epsilon>0$ and

$$
D_{\epsilon}=\frac{1}{\epsilon}\left(e_{0}+\epsilon e_{1}\right) \otimes\left(e_{0}+\epsilon e_{1}\right) \otimes\left(e_{0}+\epsilon e_{1}\right)-\frac{1}{\epsilon} e_{0} \otimes e_{0} \otimes e_{0}
$$

Check that $\lim _{\epsilon \rightarrow 0} D_{\epsilon}=W$. In other words, the rank- 3 tensor W can be obtained as a limit of a sum of two rank-one tensors: W is on the "boundary" of the space of rank-2 tensors.

Problem 3: Frobenius norm minimizations: matrix versus tensors.

The Frobenius norm $\|\cdot\|_{F}$ of a tensor is defined as the Euclidean norm of the multi-array:

$$
\|T\|_{F}^{2}=\sum_{\alpha, \beta, \gamma}\left|T^{\alpha \beta \gamma}\right|^{2}
$$

We recall the following important theorem for matrices.
Theorem 1 (Eckart-Young-Mirsky theorem). Let $A \in \mathbb{C}^{M \times N}$ be a rank- R matrix whose singular value decomposition is given by $U \Sigma V^{*}$ where $U \in \mathbb{C}^{M \times M}, V \in \mathbb{C}^{N \times N}$ are both unitary matrices and $\Sigma \in \mathbb{R}^{M \times N}$ is a diagonal matrix with real nonnegative diagonal entries. Without loss of generality we assume that the singular values are arranged in decreasing order, i.e., $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{M, N\}}$ (where $\sigma_{i}=\Sigma_{i i}$). Then, the best rank- $k(k \leq R)$ approximation of A is given by the truncated $S V D \hat{A}=U \widetilde{\Sigma} V^{*}$ with $\widetilde{\Sigma}$ the diagonal matrix whose diagonal entries are $\widetilde{\Sigma}_{i i}=\sigma_{i}$ if $1 \leq i \leq k, \widetilde{\Sigma}_{i i}=0$ otherwise. More precisely:

$$
\|A-\hat{A}\|_{F}=\min _{S: \operatorname{rank}(S) \leq k}\|A-S\|_{F}
$$

1) Do you think the analogous problem for tensors is well posed? In other words, given a tensor T of order $p \geq 3$ and rank R, can we always find a order $-p$ tensor \widehat{T} whose rank is strictly smaller than R and that achieves the minimum of $\|T-S\|_{F}$ over all the order- p tensors S of rank $k<R$?
2) We wish to come back to the interesting phenomenon observed in question 4) of Problem 2. In this question we saw that an order-3 rank-3 tensor could be obtained as the limit of a sequence of rank- 2 tensors. Use the Eckart-Young theorem to show that a rank $R+1$ matrix cannot be obtained as a limit of a sum of R rank-one matrices. Can we obtain a rank- $(R-1)$ matrix as the limit of a sequence of rank- R matrices? And what about tensors?

Problem 4: Tensors

1) Consider the tensor $M=\binom{1}{2} \otimes\binom{1}{1}+\binom{1}{0} \otimes\binom{0}{1}$.
(a) Write down the matrix components of M.
(b) For the matrix M of part (a) exhibit an uncountable number of decompositions of the form $M=\vec{a} \otimes \vec{b}+\vec{c} \otimes \vec{d}$ using the rotation matrices

$$
R=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad \theta \in \mathbb{R} .
$$

2) Consider the following tensor decomposition

$$
T=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \otimes\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \otimes\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Is this decomposition unique? Justify your answer. What is the rank of T ?
3) Let $\vec{a}_{1}, \vec{a}_{2} \in \mathbb{R}^{2}$ be linearly independent and $\vec{b}_{1}, \vec{b}_{2} \in \mathbb{R}^{2}$ be linearly independent as well. We define $T=\vec{a}_{1} \otimes \vec{b}_{1} \otimes \vec{c}+\vec{a}_{2} \otimes \vec{b}_{2} \otimes \vec{c}$ where $\vec{c} \in \mathbb{R}^{2}$ is not the zero vector.
(a) Does Jennrich's theorem apply?
(b) Prove that the tensor rank of T is 2 .

