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Abstract. In the last few years several researchers have resorted to artificial evolution (e.g., genetic algorithms)
and learning techniques (e.g., neural networks) for studying the interaction between learning and evolution. These
studies have been conducted for two different purposes: (a) looking at the performance advantages obtained
by combining these two adaptive techniques; (b) understanding the role of the interaction between learning and
evolution in biological organisms. In this paper we describe some of the most representative experiments conducted
in this area and point out their implications for both perspectives outlined above. Understanding the interaction
between learning and evolution is probably one of the best examples in which computational studies have shed light
on problems that are difficult to study with the research tools employed by evolutionary biology and biology in
general. From an engineering point of view, the most relevant results are those showing that adaptation in dynamic
environments gains a significant advantage by the combination of evolution and learning. These studies also show
that the interaction between learning and evolution deeply alters the evolutionary and the learning process themselves,
offering new perspectives from a biological point of view. The study of learning within an evolutionary perspective
is still in its infancy and in the forthcoming years it will produce an enormous impact on our understanding of how
learning and evolution operate.
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1. Introduction

Evolution and learning are two forms of biological
adaptation that differ in space and time. Evolution
is a process of selective reproduction and substitution
based on the existence of a geographically-distributed
population of individuals displaying some variabil-
ity. Learning, instead, is a set of modifications tak-
ing place within each single individual during its own
life time. Evolution and learning operate on different
time scales. Evolution is a form of adaptation capa-
ble of capturing relatively slow environmental changes
that might encompass several generations, such as
perceptual characteristics of food sources for a given
bird species. Learning, instead, allows an individual to

adapt to environmental changes that are unpredictable
at the generational level. Learning might include a va-
riety of mechanisms that produce adaptive changes in
an individual during its lifetime, such as physical de-
velopment, neural maturation, and synaptic plasticity.
Finally, whereas evolution operates on the genotype,
learning affects only the phenotype and phenotypic
changes cannot directly modify the genotype.

In the last few years researchers have used arti-
ficial evolution techniques (e.g., genetic algorithms)
and learning techniques (e.g., neural networks) for the
study of the interaction between learning and evolution.
These studies have been conducted with two different
purposes: (a) looking at the advantages, in terms of
performance, that the interaction gives to evolution;
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(b) understanding the role of the interaction between
learning and evolution in natural organisms. In this
paper we will describe some of the most representative
experiments conducted in this area and will point out
the implications from both these points of view.

We will use the term ‘learning’ to indicate modi-
fications to the synaptic weights of a neural network
during the lifetime of an individual which produce
changes that increase the adaptivity of the individual
itself. However, it is clear that adaptive changes might
be obtained by modifying other entities such as, for
example, the activation states of internal neurons, the
network architecture, and the sensory-motor character-
istics of the organism. Connectionists usually refer to
long-lasting changes in the synaptic weights aslearn-
ing and to the activation states of neurons with recur-
rent connections asmemory. Learning and memory are
both forms of plasticity in that they may produce similar
outcomes from a behavioral point of view. For exam-
ple, Yamauchi and Beer (1995) have evolved and an-
alyzed continuous-time recurrent neural networks that
give the external appearance of performing reinforce-
ment learning while in fact they have fixed connec-
tion weights and use only the dynamics of the neuron
activations. A better understanding of the functional
differences between different ways of realizing onto-
genetic plasticity is an important issue that remains to
be investigated.

The language of this paper moves between the bio-
logical, the psychological and that of control systems.
It should be noted that some of the potentially bio-
logical terms such as ‘fitness’, ‘genotypes codifying’
or ‘writing back into the genotype’ are used in a less
orthodox manner than that used in the biological liter-
ature.

2. The Adaptive Functions of Learning
in Evolution

Within an evolutionary perspective, learning has sev-
eral different adaptive functions:

1) It allows individuals to adapt to changes in the en-
vironment that occur in the lifespan of an individ-
ual or across few generations. As mentioned in the
previous section, learning has the same function at-
tributed to evolution: adaptation to the environment.
Learning supplements evolution in that it enables an
organism to adapt to changes in the environment that
happen too quickly to be tracked by evolution (Todd

and Miller, 1991; Nolfi et al., 1994b; Floreano and
Nolfi, 1997b; Nolfi and Parisi, 1997; Sasaky and
Tokoro, 1997).

2) It allows evolution to use information extracted from
the environment thereby channelling evolutionary
search. Whereas ontogenetic adaptation can rely on
a very rich, although not always explicit, amount of
feedback from the environment, evolutionary adap-
tation relies on a single value which reflects how
well an individual coped with its environment. This
value is the number of offspring in the case of
natural evolution and the fitness value in the case
of artificial evolution. Instead, from the point of
view of ontogenetic adaptation, individuals contin-
uously receive feedback information from the en-
vironment through their sensors during the whole
lifetime. This huge amount of information encodes
only very indirectly how well an individual is do-
ing in different moments of its life or how it should
modify its own behavior in order to increase its fit-
ness. However, ontogenetic and phylogenetic adap-
tation together might be capable of exploiting this
information. Indeed evolution may be able to trans-
form sensory information into self-generated rein-
forcement signals or teaching patterns (Ackley and
Litmann, 1991; Nolfi and Parisi, 1993; Nolfi and
Parisi, 1994; Floreano and Mondada, 1996; Nolfi
and Parisi, 1997).

3) It can help and guide evolution. Although physical
changes of the phenotype, such as strengthening of
synapses during learning, cannot be written back
into the genotype, Baldwin (1896) and Waddington
(1942) suggested that learning might indeed affect
the evolutionary course in subtle but effective ways.
Baldwin’s argument was that learning accelerates
evolution because sub-optimal individuals can re-
produce by acquiring during life necessary features
for survival. However, since learning requires time
(and might thus be a disadvantage), Baldwin sug-
gested that evolution tends to select individuals who
have already at birth those useful features which
would otherwise be learned. This latter aspect of
Baldwin’s effect, namely indirect genetic assimi-
lation of learned traits, has been later supported
by scientific evidence and defined by Waddington
(Waddington, 1942) as acanalization effect. Re-
cently, Hinton and Nowlan (1987) have provided a
clear computational model that demonstrates how
learning may help and guide evolution. Nolfi et al.
(1994a) have further investigated this issue in a case
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in which the learning task differs from the evolution-
ary task.

4) Other advantages. Learning might allow the pro-
duction of complex phenotypes with short geno-
types by extracting some of the information nec-
essary to build the corresponding phenotype from
the environment (Todd and Miller, 1991; Mayley,
1997). Moreover learning can allow the mainte-
nance of more genetic diversity. Different genes, in
fact, have more chances to be preserved in the popu-
lation if the individuals who incorporate those genes
are able to learn the same fit behaviors (Whitley et
al, 1994).

However, learning has costs:

1) A delay in the ability to acquire fitness. Learning
individuals will necessarily have a sub-optimal be-
havior during the learning phase. As a consequence
they will collect less fitness than individuals who
have the same behavior genetically specified. The
longer the learning period, the more accumulated
costs have to be paid (Mayley, 1997).

2) Increased unreliability. “Since learned behavior is
determined, at least partly, by the environment, if a
vital behavior-defining stimulus is not encountered
by a particular individual, then it will suffer as a con-
sequence. The plasticity of learned behaviors pro-
vides the possibility that an individual may simply
learn the wrong thing, causing it to incur an incor-
rect behavior cost. Learning thus has a stochastic
element that it is not present in instinctive behav-
iors” (Mayley, 1997, p. 216).

3) Other costs. In natural organisms or in biologically
inspired artificial organisms learning might imply
additional costs. If individuals are considered juve-
nile during the learning period, learning also implies
a delayed reproduction time (Cecconi et al., 1996).
Moreover, learning might imply the waste of en-
ergy resources for the accomplishment of the learn-
ing process itself (Mayley, 1997) or for parental
investment (Cecconi et al., 1996). Finally, while
learning, individuals without a fully formed behav-
ior may irrevocably damage themselves (Mayley,
1997).

In the next sections we will present a set of models
and experiments devised to study the interaction be-
tween learning and evolution and we will discuss the
implications from the different perspectives described
above.

3. How Learning Can
‘Help and Guide’ Evolution

Hinton and Nowlan (1987) have described a simple
computational model that shows how learning might
help and guide evolution in some circumstances. The
authors considered the case in which “a neural network
confers added reproductive fitness on an organism only
if it is connected in exactly the right way. In this worst
case, there is no reasonable path toward the good net
and a pure evolutionary search can only discover which
of the potential connections should be present by trying
possibilities at random. The good net is like a needle in
a haystack” (p. 495). In their experiment individuals
have genotypes with 20 genes which encode a neural
network with 20 potentials connections. Genes can
have three alternative value: 0, 1, and ? that repre-
sent, respectively, the presence of the connection, the
absence of the connection, and a modifiable state (pres-
ence or absence of the connection) that can change its
value according to a learning mechanism. The learn-
ing mechanism is a simple random process that keeps
changing modifiable connection weights until a good
combination (if any) is found during the limited life
time of the individual.

In the absence of learning (i.e., when genes can only
have 0 and 1 values), the probability of finding a good
combination of weights would be very small given that
the fitness surface would look like a flat area with a
spike in correspondence of the good combinations (see
Fig. 1, thick line). On such a surface genetic algorithms

Figure 1. Fitness surface with and without learning. In absence of
learning, the fitness surface is flat, with a thin spike in correspondence
of the good combinations of alleles (thick line). When learning is
enabled, the fitness surface has a nice hill around the spike which
includes the alleles combination which have in part right fixed values
and in part unspecified (learnable) values (thin line). The thick line
represents the fitness for each possible combination of two alleles
([0, 1]) while the thin line represents the fitness for each possible
combination of three alleles [0, 1, ?]). Redrawn from Hinton and
Nowlan (1987).
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do not perform better than any random search algo-
rithm. However, if learning is enabled, it will be more
probable that some individuals will achieve the good
combinations of connection values at some point dur-
ing life and start to collect fitness points. The ad-
dition of learning, in fact, produces an enlargement
and a smoothing of the fitness surface area around the
good combination which can be discovered and easily
climbed by the genetic algorithm. This is due to the
fact that not only the right combination of alleles but
also combinations which in part have the right alleles
and in part have unspecified (learnable) alleles report
an average fitness greater than 0 (fitness monotonically
increases with the number of fixed right values because
the time needed to find the right combination is in-
versely proportional, on the average, to the number of
learnable alleles).

In other words, learning makes the fitness surface
smoother, and this, in turn, simplifies the search which
should be performed by evolution. As claimed by
Hinton and Nowlan, with learning “it is like searching
for a needle in a haystack when someone tells you when
you are getting close” (1987, p. 496). This simple
model also accounts for the Baldwin effect that postu-
lates that characters that are initially acquired through
learning may later be fixated in the genotype. Once
individuals which have part of their genes fixed on
the right values and part of their genes unspecified
(learnable) are selected, individuals with less and less
learnable genes tend to be selected given that fitness
monotonically increases by decreasing the number of
learnable genes (an equilibrium point is eventually
reached, see Hinton and Nowlan, 1987). In other words,
characters that were first acquired through learning tend
to become genetically specified later on.1

In the representation adopted in Fig. 1 each indi-
vidual is represented as a point on the fitness surface
with a height corresponding to the average fitness of the
individual during its lifetime. This is a static represen-
tation in which changes in performance during lifetime
cannot be visualized. Another way of representing the
individuals in the search space is to imagine that each
individual network corresponds to a point in the pheno-
type space. In this case changes of connection weights
introduced by learning correspond to a movement of
the learning individual in the phenotype space and on
the fitness surface. As a consequence, changes in per-
formance correspond to movements toward higher or
lower areas of the fitness surface. By using this type
of representation the interaction between learning and

Figure 2. Representation in the phenotype space of the same fitness
surface described in Fig. 1. The full line represents the fitness for each
possible combination of two alleles (0, 1). The cross-marks represent
the positions of the individuals at birth. The arrows represent the
movements of the individual in the search space corresponding to
changes of modifiable alleles. Notice however that only learning
individuals move in the search space during lifetime.

evolution in the Hinton and Nowlan’s model can be ex-
plained in the following way. The fitness surface (i.e.,
the distribution of fitness value that are assigned to
each possible combination of 0 and 1 alleles) is flat
with the exception of one spike of high fitness both in
the case of learning and non-learning individuals. The
initial population will be represented as a set of fixed
points randomly distributed on the fitness surface (see
cross-marks in Fig. 2). Non-learning individuals do
not move in the phenotype space during their lifetime
while learning individuals do (given that some of their
connections continually change value during lifetime).
Clearly, the probability that at least an individual will
step on the spike will be much higher in the case of
learning individuals. In other words we can say that
learning allows the evolutionary process to explore the
landscape surrounding each candidate for reproduction
(Nolfi et al., 1990).

If learning is represented as a random process (such
as in the case of Hinton and Nowlan’s model), the rep-
resentations shown in Figs. 1 and 2 are functionally
equivalent. However, as we will see in the next sec-
tions, the latter representation is more appropriate in
the cases in which learning is modeled as a form of
change that has a directionality.

Despite its explicative power, Hinton and Nowlan’s
model has several limitations: (1) learning is modeled
as a random process; (2) there is no distinction be-
tween the learning task and the evolutionary task; (3)
the environment does not change; (4) the learning
space and the evolutionary space are completely cor-
related. The two spaces are correlated if genotypes
which are close in the evolutionary space correspond
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to phenotypes which are close in the phenotype space
(Mayley, 1997).

The results obtained by Hinton and Nowlan may not
generalize completely to other circumstances in which
these limitations are released. In particular, they may
not generalize to cases in which the learning and the
evolutionary spaces are less correlated. In the case
of the Hinton and Nowlan model, learning and evolu-
tion operate on the same entities (i.e., the connection
weights) with the same operators (i.e., both changes
produced by mutations and changes produced by learn-
ing correspond to substitutions of genes with new val-
ues which are randomly selected). Therefore the two
spaces are completely correlated. By systematically
varying the cost of learning and the correlation be-
tween the learning space and the evolutionary space,
Mayley (1997) showed that: (1) the adaptive advantage
of learning is proportional to the correlation between
the two search spaces; (2) the assimilation of char-
acters first acquired through learning is proportional
to the correlation between the two search spaces and to
the cost of learning (i.e., to the fitness lost during the
first part of the lifetime in which individuals have sub-
optimal performance); (3) in certain situations learning
costs may exceed learning benefits.

4. Evolving Individuals that Learn a Task
Different from What They Are Selected for

As we claimed in the previous section, one of the lim-
itations of Hinton and Nowlan’s model is that there is

Figure 3. Left: The environment containing 10 food tokens (F) and the animat (A). The trace on the terrain represents the trajectory of a typical
evolved individual.Right: Neural network architecture. All connections are inherited; however, connections represented with thin lines are also
modified by prediction learning during the lifetime of the individual while connections represented with thick lines are not.

no distinction between the learning task and the evolu-
tionary task. This is possible because the experimenter
provides supervision signals both for the evolutionary
and the learning task. In natural evolution, instead, the
environment does not usually provide cues that directly
indicate to the individual how it should change in order
to produce more adapted behavior. Natural selection
is the only source of “supervision” for many living
systems. However, natural organisms can use envi-
ronmental information made available to them through
their sensors in order to acquire competencies (such as
the ability to predict the next sensory states; see Nolfi
and Tani, 1999) that may indirectly increase their abil-
ity to reproduce.

Nolfi et al. (1994a) have studied the case of artifi-
cial agents (also known as animats, see Wilson, 1987)
that evolve (to become fitter at one task) at the popula-
tion level and learn (a different task) at the individual
level. In particular, individuals which were selected for
their ability to find food in their environment were also
asked to learn to predict the sensory consequences of
their motor actions during their lifetime. Notice how
the supervision necessary for learning this task is di-
rectly available from the environment (i.e., the correct
prediction corresponds to the state of the sensors at the
next time step).

Each individual animat lives in a two-dimensional
grid world where a number of food tokens are randomly
distributed (Fig. 3, left). Each food token occupies one
cell; if the animat happens to step on one of these cells,
the food token is automatically “eaten” and the animat’s
fitness is increased. Individuals are equipped with a



94 Nolfi and Floreano

neural network interfaced to a sensorimotor system that
provides input information on the distance and angle
(with respect to the facing direction of the animat) of
the nearest food token, and on the planned motor action
(Fig. 3, right). Two input units encode the angle and the
distance of the nearest food token and two other units
(thresholded to the nearest binary value) encode one
of four possible actions: turn 90◦ right, turn 90◦ left,
move one cell forward, and remain still. At each time
step, the neural network receives as input the sensory
information on the nearest food token and the current
planned motor action and produces as output the next
planned action and a prediction of the sensory state
after the execution of the current planned action. At
this point: (a) the planned action that was used as input
is executed and the next planned action is passed as new
input; (b) the freshly-gathered sensory information is
used both as input and as teaching input for the output
units encoding the predicted state of the sensors (the
new sensory state is compared with the predicted state
and the difference (error) is used to adjust by back-
propagation the connection weights between the four
input, the seven hidden, and the two prediction units).

The initial population is composed of 100 individu-
als. At the end of life the 100 individuals are ranked
in terms of their fitness (total number of food elements
eaten during life) and the best 20 individuals are al-
lowed to reproduce by generating 5 copies each of
their connection weights. The inherited original weight
matrices (changes due to learning during life are dis-
carded) are mutated by selecting 5 weights at random
and perturbing the weights’ value by adding a quantity
randomly selected.

The results showed that, after a few generations, in-
dividuals learning to predict also increased their ability
to find food during life (Fig. 4).

Moreover, by comparing the results of the experi-
ments described above with another set of experiments
in which individuals were not allowed to learn to predict
during their lifetime, it was shown that learning popu-
lations displayed faster and higher fitness values across
generations than populations without learning (Fig. 5).
The same type of results were obtained in other cases
and in particular in cases in which the learning task and
the evolutionary task were clearly “uncorrelated” (see
Parisi et al., 1992; Harvey, 1997).

Since here the learning criterion is different from
the evolutionary goal and learning has a directionality
(i.e., the weights are not changed in a random fash-
ion), the explanation by Hinton and Nowlan depicted

Figure 4. Average number of food elements eaten by populations of
successive generations which learn to predict. Each curve represents
performance prior to learning and then for each of the 20 epochs of
life (performance prior to learning are obtained by measuring the
number of food tokens eaten by individuals during one epoch of life
without updating the weights). For reasons of space, performance
are displayed only each 10 generations. Average results over 10
replications of the experiment.

Figure 5. Average of food tokens eaten by populations of animats
throughout generations for experiments with and without learning.
Each curve is the average result of 10 replications. The difference
between the two curves is statistically significant from generation 25
(see Nolfi et al., 1994).

in Figs. 1 and 2 is not sufficient for explaining these
results. A new explanation of the interaction between
learning and evolution has been proposed (Nolfi et al.,
1994a; Parisi and Nolfi, 1996). Imagine two different
search surfaces, an evolutionary surfaces and a learn-
ing surface (Fig. 6). Changes due to learning produce
a movement of the individual phenotype both on the
learning and the evolutionary surfaces. However, be-
cause learning tries to maximize performance on the
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Figure 6. Fitness surface for the evolutionary task and performance
surface for the learning task (sensory prediction) for all possible
weight matrices. Movements due to learning are represented as ar-
rows. Pointa is in a region in which the two surfaces are dynamically
correlated. Even ifa andb have the same fitness on the evolutionary
surface at birth,a has more probability to be selected thanb since it
is more likely to increase its fitness during life thanb.

learning task, individuals will move toward the higher
area of the learning surface. Given that the way in
which individuals move in weight space affects their
fitness (the total fitness of the individual is the sum of
the fitness values received during such displacements
on the weight space) evolution will tend to select indi-
viduals located in areas in which, by increasing their
performance on the learning task, they also increase
their performance on the evolutionary task.

Consider for example two individuals,a and b,
which are located in two distant locations in weight
space but have the same fitness at birth; i.e., the two
locations correspond to the same height on the fitness
surface (cf. Fig. 6). However, individuala is located
in a region in which the fitness surface and the learn-
ing surface are dynamically correlated; i.e., a region
in which movements that result in an increase in height
with respect to the learning surface cause an increase
with respect to the fitness surface, on the average. In-
dividual b, on the other hand, is located in a region in
which the two surfaces are not dynamically correlated.
If individual b moves in weight space it will go up in
the learning surface but not necessarily in the fitness
surface. Because of learning, the two individuals will
move during their lifetime in a direction that improves
their learning performance, i.e., in a direction in which
their height on the learning surface tends to increase.
This implies that individuala, which is located in a dy-
namically correlated region, will end up with a higher

fitness than individualb and, therefore, will have a
better chance to be selected. The final result is that
evolution will have a tendency to progressively select
individuals which are located in dynamically correlated
regions. In other words, learning forces evolution to se-
lect individuals which improve their performance with
respect to both the learning and the evolutionary task.

Two surfaces are dynamically correlated even if
some changes that produce an increase in height with
respect to the learning surface produce a corresponding
decrease with respect to the evolutionary surface. As
shown in Fig. 4, for example, the changes due to learn-
ing which occur during the last part of individuals life-
time produce a decrease in performance with respect to
the evolutionary task. Despite of that, changes due to
learning tend to produce an increase in performance on
the evolutionary task, on the average. Also notice that
when the evolutionary surface present a small peck (as
in the left part of Fig. 6) evolution will tend to select
individuals located down the peck as the individual a
(i.e., individuals that while move following the gradient
of the learning surface spend as much time as possible
on the peck itself ).

These results show that although evolution and learn-
ing are two distinct types of change occurring in
two distinct entities (populations and individual organ-
isms), they strongly influence each other. The influence
of evolution on learning is not surprising. Evolution-
ary change leaves its trace in the genotype. Hence,
each individual inherits a genome which is the cumu-
lative result at the level of evolutionary changes that
have occurred at the level of the population. Since
an individual’s genome partially specifies the resulting
phenotypic individual and it constrains how the individ-
ual will behave and what it will learn, the way is open
for an influence of evolution on learning. However,
the experiments described in this and in the previous
section clearly show that the reverse is also true: learn-
ing affects evolution. The interaction between the two
processes is so profound that learning tends to produce
a positive effect on evolution even if the learning task
and the evolutionary task are different (and, apparently,
independently from what the learning task is, see Parisi
et al., 1992).

In two recent articles, Harvey (1996, 1997) proposed
a different explanation of the interaction between evo-
lution and learning than the one described in this sec-
tion. He claimed that the improvement in average
performance observed in the learning individuals de-
scribed in Figs. 5 and 6 is not due to an interaction
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Figure 7. A two-dimensional representation of the search space.
Redrawn from Harvey (1996).

between learning and evolution but “rather from a
relearning effect on weights perturbed by mutation”
(Harvey, 1997, p. 328). Harvey’s hypothesis is based
on evidence that by perturbing the weights of a neu-
ral network previously trained with back-propagation
on a set of input-output pairs and then retraining the
network on a new training set, uncorrelated with the
original one, performance also improves on the pat-
terns belonging to the original training set (Harvey and
Stone, 1996).

Harvey’s explanation is based on a geometrical ar-
gument (Fig. 7). Briefly stated, the trajectory of the
network in the weight space during training on the sec-
ond set is very likely to transit by the original point
where it was before being perturbed by noise. Assume
that A represents the weights of the network trained
on the original training set, B1 and B2 are two pos-
sible positions of the network after perturbation, and
C is the position of the network after being trained on
the second training set. Finally, assume that perfor-
mance on the original set is inversely proportional to
the distance from point A. Therefore, whenever B lies
outside the inner arc PQ (e.g., B1), its trajectory gets
closer to A for some time; instead, whenever B lies
inside the inner arc PQ (e.g., B2), its trajectory always
goes away from A. Regardless of the position of C, the
former situation happens at least 50% of the times for
a 2-dimensional weight space and much more often in
a high-dimensional weight space (Harvey, 1997); fur-
thermore, it happens 100% of the times when C lies
within the circle.

On the basis of this new explanation, Harvey claims
that the beneficial effects of learning a different task
than the evolutionary task can be explained by con-
sidering a highly converged evolved population sit-
ting on point A (food finding) being pulled away by

mutations to point B, and then transiting to point C
with prediction learning. As a consequence he hy-
pothesized that “if one substituted for the elite member
of a population evolved on the food-finding task one
individual trained by back-propagation using an exter-
nal teacher (or any other learning mechanism) on the
same task, then one should expect similar responses
after weight perturbations” (Harvey, 1986, p. 83). In
order to test this prediction, we measured the perfor-
mance of individuals of successive generations which
were allowed to learn for the first time (i.e., individuals
which had the same architecture of learning individu-
als but which evolved without being exposed to learn-
ing during lifetime; see Nolfi, 1998). In contrast with
Harvey’s expectation, learning to predict produces a
significant decrease in performance of these individ-
uals even though their weights have been perturbed
by mutations (exactly like the weights of individuals
which were exposed to learning in previous genera-
tions). This and other results described in Nolfi (1998)
suggest that: (a) the advantages produced by lifetime
learning are due to the interaction between learning and
evolution; (b) in the case of learning individuals, the
population does not converge on A but on some point
on the left side of A which ensures that by learning
(i.e., by moving toward C) individuals will spend most
of their lifetime close to A. This explanation fits nicely
the suggestion given above that evolution tends to select
individuals that are located in dynamically correlated
regions of the fitness and learning surfaces.

It should be noted that in these experiments char-
acters initially acquired through learning are not as-
similated in the individuals’ genotype in successive
generations, at least completely, even if the assimila-
tion would increase individuals’ fitness (i.e., individu-
als which acquire fit behaviors through learning start
with lower performance and therefore collect less fit-
ness in the first part of their lifetime). This may be ex-
plained by considering that: (a) the cost of learning can
be reduced by increasing the learning speed (as can be
observed in Fig. 4, evolved individuals reach optimal
performance in the very first epochs of their lifetime);
(b) the learning space and the evolutionary space are not
completely correlated (on the correlation between the
learning space and the evolutionary space see Mayley,
1997). In fact, although learning and evolution operate
on the same entities (i.e., the connection weights), the
genetic operators and the learning operators are quite
different (mutations are accomplished by adding ran-
domly selected values to a set of randomly selected
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connection weights while learning is accomplished by
back-propagation). This implies that points which are
close in the learning space may be far apart in the evo-
lutionary space. In other words, points which can be
reached with few learning cycles, may require a pro-
hibitively long list of mutations. As we claimed in the
previous section the probability to genetically assim-
ilate characters acquired through learning is inversely
proportional to the correlation between the learning and
the evolutionary space.

5. Exploiting the Regularities
of the Environment Through Learning

In all the experiments described so far the weights were
genetically inherited although, in the models described
in the previous two sections, the inherited weights were
also subjected to changes during the lifetime of indi-
viduals. However in most of the species the genome
does not contain all the information necessary to build
the corresponding phenotype. It is therefore unlikely
that fine details such as initial weight values could be
precisely encoded on the genotype.

In this section we will describe an experiment
(Floreano and Mondada, 1996) in which the neural net-
work is used to control a mobile robot and its synaptic
weights are not precisely encoded into the genotype,
but are continuously modified during lifetime through
a learning process in which genetically-inherited in-
structions interact with information coming from the
external environment. In other words, the genotype
encodes only the architecture and “meta-properties”
of the synapses, but not their precise strengths. Every
time that a chromosome is decoded into the correspond-
ing neural controller, all the synapses are intialized to
small random values. As soon as the robot begins to
move and sensory signals flow through the network,
synaptic values can change according to the geneti-
cally encoded meta-properties and the activations of
the artificial neurons. These meta-properties include
four possible learning rules, a learning rate, and other
chemical properties of the synapse, such as whether it is
excitatory or inhibitory and whether it drives or modu-
lates the postsynaptic neuron.2 Therefore, the accurate
balance between weighted signals necessary to drive
the motor neurons in a coordinated fashion must be
learned during lifetime according to genetically speci-
fied instructions.

The mobile robot shown on the left side of Fig. 8
(Mondada et al., 1993) was employed in these experi-

ments. The robot is supported by two wheels that can
move both forward and backward and it has 8 infrared
proximity sensors which can detect obstacles up to a
distance of about 4 cm. The neural network archi-
tecture is fixed and is composed of three units: one
hidden neuron and two motor neurons, each one re-
ceiving input/activation via synaptic connections from
all eight infrared sensors and from the hidden neuron
itself (Fig. 8, right). Signals going through the synaptic
connections, which could have a driving or a modula-
tory effect on the postsynaptic neuron, were combined
in a two-component activation function (Phillips et al.,
1995) that generated an output between 0 and 1. The
sum of the driving signals determined the direction of
rotation of the wheels, whereas the sum of modulatory
signals could enhance or reduce rotation speed, but
could not change the direction of rotation. The geno-
type of each individual contains 6 bits for each synapse
encoding its meta-properties: driving or modulatory (1
bit), excitatory or inhibitory (1 bit), four learning rule
(2 bits), and four learning rate (2 bits). Each individ-
ual synapse could change its strength according to one
of four Hebbian learning rules (Willshaw and Dayan,
1990): pure Hebbian, postsynaptic, presynaptic, and
covariance. These learning rules included a decay fac-
tor so that synaptic strengths were always bound within
the interval [0.0, 1.0] and their signs were genetically
specified (second bit of each gene). The final weight
values were not coded back into the genotype. Indi-
viduals were selected for their ability to navigate in the
environment shown in the lower left of Fig. 8 as fast
as possible while keeping far from obstacles. For all
other details see Floreano and Mondada (1996).

All the best neural networks of the last generation
could control the robot in order to keep a straight trajec-
tory while avoiding obstacles. The evolved behaviors
resulted in smooth paths around the arena. The neural
networks learned to navigate starting from random ini-
tial values assigned to the synapses. The acquisition of
the ability to navigate in the environment is very fast:
in less than 10 sensory motor loops the best individ-
uals were already capable of moving forward without
getting stuck into walls.

Figure 9 shows the trajectory of one of the best
evolved controllers in two successive laps of the loop-
ing maze. Initially, the synapses were randomly ini-
tialized and the robot was positioned facing a corner
of the inner wall (Fig. 9, left; initial position corre-
sponds to the set of superimposed bars in the lower
portion of the environment). During the first 2 s (6–7
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Figure 8. Top-left: The Khepera robot.Bottom-left: Bird-view of the environment with the robot.Right: the architecture of the neural network
employed. Black disks are synapses; the circle in the middle of the robot body represents the hidden neuron. The activation of the three units
correspond, respectively, to the hidden unit, the left motor, and the right motor.

Figure 9. Trajectory of an evolved robot learning to navigate during its lifetime. Position data, visualized as bars representing the axis connecting
the two wheels, were acquired with an external laser positioning device every 100 ms.Left: trajectory during the first lap (the robot starts in the
lower portion of the environment and turns anti-clockwise).Right: trajectory during the second lap.
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synaptic updates), the robot adjusted its position alter-
nating back-and-forth movements until it found a wall
on its right side. This initial behavior was quite stereo-
typical: it was displayed for any starting position. Once
a wall had been found, the robot moved forward keep-
ing it at a distance of 2 cm from its own right side. Ev-
ery second or third action, it slightly turned toward the
wall and then continued forward. This sort of jerky be-
havior was gradually reduced when coasting a straight
long wall (e.g., the north and east walls). If the wall
was slightly bent, the robot could still follow it with-
out reducing speed, but when it encountered a convex
angle smaller than 90◦ (which means that most of the
front infrared sensors were active) the robot stopped,
backed rotating to the right, and then resumed forward
motion in the new direction. After one lap around the
maze, the path became smoother with less trajectory
adjustments and more tuned to the geometric outline
of the environment (Fig. 9, right).

When looking at the internal dynamics of the evolved
network, the authors observed that synapses keep
changing throughout the whole lifetime of the individ-
ual. In particular, synapses continued to change even
if the behavior of the robot after a few seconds was
already stable (see Floreano and Mondada, 1996).

In the conventional view, synapses are relatively
slow-changing and stable components of the ner-
vous system whereras neuron activation changes much
faster. Synaptic change is identified with learning of
new skills or acquisition of new knowledge, while neu-
ral activation is identified with behavior (or short term
memory). Typically, it is assumed that acquisition of
a stable behavior in a static environment (for example,
learning to distinguish faces) corresponds to stability—
no further change—of synapses in the network (e.g.,
see Hertz et al., 1989). This assumption is explicitly in-
cluded into the objective functions from which—both
supervised and unsupervised—conventional learning
algorithms are analytically derived: least-mean-square
error minimization, energy reduction, maximization of
node mutual information, etc. Since synaptic stability
was not included in the fitness function employed in
this experiment, which was defined solely in behav-
ioral terms, the evolved neurocontrollers were free to
explore and exploit different ways of using synaptic
change.

In order to describe this dynamical system, one can
analyze its state-space behavior, that is the development
of the synaptic vector in its 27-dimensional space over
100 updates (which correspond to two laps around the

Figure 10. State-space representation of synaptic dynamics dur-
ing the first 100 actions plotted as trajectory within the space of the
first three principal components. Oscillations within the subspace of
the third (smallest) component correspond to fine trajectory adjust-
ments. Method: Sanger’s network (Sanger, 1989) for extracting the
first three principal components of the input correlation matrix was
trained to stability on the 27-component vectors corresponding to the
synaptic activity recorded during the first 100 actions of the robot
visualized in Fig. 9. After training, input vectors were presented
again to the network and output unit activations were plotted in the
resulting 3-dimensional space.

looping maze). Since it is impossible to draw a 27-
dimensional space, a more convenient representation
could be that of displaying how the 27-dimensional
vector varies over 100 time steps. Principal Component
Analysis does just that by extracting the directions of
maximum variance of the distribution of data (our 100
synaptic vectors). Once we have extracted the first,
say, three directions of maximum variance, we have a
3-dimensional space on which we can sequentially plot
each of the 100 vectors. Figure 10 shows the trajectory
of synaptic change in the reduced state-space of the first
three principal components of the recorded synaptic
vectors during the first 100 actions of the individual
displayed in Fig. 9.

During the first six actions the neural network moves
toward a subregion of the space for which there is no
change in the first two principal components; resid-
ual variation along the slice of space correspond-
ing to the third principal component corresponds to
fine trajectory adjustments and is further reduced as
the robot gradually tunes its path to the geometry of the



100 Nolfi and Floreano

environment. This means that, after an initial phase of
strong variation, the synapses as a whole change in a
systematic and co-ordinated fashion. In other words,
the stable behavior acquired during life is regulated
by continuously changing synapses which are dynam-
ically stable. Roughly speaking, this means that when
one synapse goes up, there will be another synapse go-
ing down. Other solutions might exist that produce
similar fitness values and correspond to a similar be-
havior. For example, the synapses might reach a static
state after a few steps, as in most artificial neural net-
works. However, this solution was never observed in
the individuals analysed.

The synapses evolved in this experiment are respon-
sible for both learning and behavior regulation. Knowl-
edge in the network is not expressed by a final stable
state of the synaptic configuration, but rather by a
dynamic equilibrium areain an n-dimensional state-
space (wheren is the number of synapses). Learn-
ing can be seen as a displacement of the entire system
from a dynamically unstable state to a new dynam-
ically stable state. Whether biological synapses can
play a similar role or not, is an issue that remains to be
investigated.

Learning of the evolved controller relies on simple
genetically-inherited abilities. For example, the con-
troller analyzed above always starts by moving back-
ward until it finds some object; then it rotates to the right
until its rightmost sensors become active and synapses
begin to change. These two simple motor programs re-
sult from weak sensory signals (mostly noise) filtered
and amplified through the synaptic matrix of excitatory
and inhibitory weights. They represent the basis from
which learning can start to operate and are similar to
instincts in that they are both genetically inherited and
represent primitives upon which the organism can start
to explore its environment. In other words, evolution
not only shapes the learning modality, but also boot-
strap learning by selecting basic behaviors useful for
learning.

The analysis of the evolved behavior described above
clearly indicates that the environment plays a great
role in shaping the ontogenetically-developed behav-
ior. Behavior is an emergent property of the interaction
between inherited instructions and the environment not
only because evolution exploits the complexity of the
environment and of the interaction between the robot
and the environment, but also because inherited instruc-
tions only indirectly constrain how the robot reacts to
the environment. The way in which the robot reacts to

different sensory states itself is affected by the previous
interactions of the robot with the environment. Hence,
the amount of information encoded in the genotype can
be reduced given that part of the information will be
filled up by the interaction between inherited instruc-
tions and the environment.

This model is also interesting from the point of view
of the issues described in the previous two sections. In
the Hinton and Nowlan’s model described in Section 3,
learning is modeled as a random search process with-
out any directionality. Instead, in the model described
in the previous section, learning has a directionality
but the learning task is fixed and pre-determined by
the experimenter. In the model described in this sec-
tion, learning has a directionality and the learning task
itself (i.e., the learning constraints) is evolved. Inter-
estingly some constraints on what can be learned are
determined by the interaction between the robot and
the environment. For example, only the weights de-
parting from the sensors which are activated in a given
environment can be affected by learning (for example,
some weights from the left sensors will never learn
because the robot follows walls on its right side). In-
stead, other constraints (e.g., the learning rates and the
learning rules) are genetically inherited and therefore
are subjected to the evolutionary process. This implies
that in this model the exploration of the phenotypic
space around the point corresponding to the individual
at birth has a directionality which is determined by both
environmental and genetic constraints.

One last point that should be stressed is the fact
that in this model evolution and learning operate on
two different synaptic entities (the meta-properties and
the weight strengths, respectively) while in the experi-
ments described in the previous two sections they op-
erate on the same entity (i.e., the weight strengths).

6. Adaptation to Fast Changing Environments

One of the adaptive functions of learning is the possi-
bility to adapt to changes in the environment that are too
fast for evolution to be able to track them. In the previ-
ous experiment this aspect was not taken into consid-
eration because the environment did not change across
generations.

Consider the case of a Khepera robot that should find
a target in an arena in which walls change color from
black to white (Nolfi and Parisi, 1997). The color of the
walls significantly affects the response of the infrared
sensors of the robot. Since the target is invisible, the
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Figure 11. Two environments with a target area (small black circle) and the Khepera robot (large white circle). The target area is painted
on the floor and therefore it cannot be detected by the robot’s sensors. The two environments differ in the color of the walls. The wall of the
environment on the right reflect six times more light than those of the environment on the left. The environments measure 60×20 cm, the target
area has a diameter of 2 cm.

robot should explore the environment as much as pos-
sible. In order to do so it should adapt during lifetime
to the different color of the walls.

The environment used for the experiments is a
60× 20 cm arena surrounded by walls (Fig. 11). The
target area is a circle of 2 cm of diameter and is po-
sitioned at randomly chosen locations. Although the
robots cannot directly perceive the target area, the fit-
ness function selects individuals that can reach the tar-
get area in the shortest amount of time. This selection
criterion indirectly encourages robots to explore the
arena efficiently in order to increase their chance to
end up on the target area.

Robots can live in two different types of environ-
ments: (a) an environment with dark walls, and (b) an
environment with bright walls, i.e., walls that reflect six
times more light than dark walls. In the dark environ-
ment infrared sensors are activated within a distance of
about 1 cm from the wall whereas in the light environ-
ment this distance is 6 cm. The robot should behave
differently in the two environments in order to explore
as much as possible the arena. If it lives in environ-
ment (a) the robot should move very carefully when
sensors are activated because dark walls are detected
only when they are very close. In contrast, if the robot
lives in environment (b) the walls can be detected from
farther away; therefore, if the robot wants to explore
the portion of the arena which is close to the walls,
it should begin to avoid them only when the sensors
are strongly activated. Consider however that individ-
ual robots do not know in which type of environment
they are going to live. Hence they should be capable
of detecting the type of environment in which they are
currently placed and should adapt to it through lifetime
accordingly.

Robots are controlled by a feedforward neural net-
work consisting of just an input and an output layer
(Fig. 12). The input layer includes four units that

Figure 12. Self-teaching network. The output of the two teaching
units is used as teaching input for the two motor units. The Delta
Rule is used to change the weights from the input units to the motor
units. The weights from the input units to the teaching units do not
change during the lifetime of an individual.

encode the activation level of the robot’s sensors. The
first input unit encodes the average activation level of
sensors 1 and 2, the second unit the average activation
of sensors 3 and 4, etc. Hence, the network has four
receptors: front, back, left, and right. These four input
units are connected to four output units. The first two
output units encode the speeds of the two wheels of the
Khepera robot. The remaining two output units repre-
sent two ‘teaching units’ that encode a teaching input
for the first two output units. (A more detailed descrip-
tion of this type of architecture is given in Nolfi and
Parisi, 1993, 1994). This self-generated teaching input
is used to change the weights from the input units to
the two motor units with the Delta Rule (Widrow and
Hoff, 1960). In other words, the neural architecture
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includes two distinct sub-networks that share the same
input units but have separate output units. The first
sub-network (“standard network”; thick connections
in Fig. 12) determines the robot’s motor actions. The
second sub-network (“teaching network”; thin con-
nections in Fig. 12) determines how the information
coming from the environment is used to change the
connection weights of the standard network. All con-
nection weights are genetically encoded and evolved,
but the connection weights of the teaching network
(teaching weights) do not change during the robot’s
lifetime while the connection weights of the standard
network (standard weights) do change. This special ar-
chitecture allows evolution to determine, by selecting
the weights of the teaching network, the way in which
environmental information modifies the nervous sys-
tem of our creatures and, as consequence, their behav-
ior during life (for a similar architecture in which the
teaching network produce a self-generated reinforce-
ment signal see Ackley and Littman, 1991).

The way in which our robots may adapt to different
environments during their life becomes clear if one con-
siders that the output of the teaching network, which
functions as teaching input for the standard network,
depends on two factors: the connection weights of the
teaching network and the activation value of the four
sensory units. While the connection weights of the
teaching network are genetically inherited and are not
directly influenced by the current environment, the sen-
sory input does reflect the external environment. As
a consequence, the teaching input generated by the
teaching network may be influenced by the external
environment and it can teach different things in dif-
ferent environments. Evolution has the possibility to
select robots that are able to adapt to changing envi-
ronments by selecting teaching weights that produce
teaching inputs that are different in different environ-
ments and that produce changes that are appropriate to
the current environment (for other details see Nolfi and
Parisi, 1997).

The obtained results show that: (a) learning has an
adaptive function. Individuals which were subjected to
lifetime learning, in fact, outperformed non-learning
individuals (i.e., individuals obtained by running an-
other set of simulations in which learning was in-
hibited); (b) characters acquired through learning are
adapted to the particular environment in which the
learning takes place. It was observed, in fact, that indi-
viduals collect more fitness in the environment in which
they were trained than in the other environment.

How is such adaptation to the current environment
actually accomplished? How can robots ‘recognize’
the type of environment they happen to be born in and
how can they modify themselves to adapt to that envi-
ronment?

If we examine the type of stimuli that the two iden-
tical copies of the best individual of each generation
experience in the dark and in the bright environment,
we see that these stimuli differ both quantitatively and
qualitatively depending on the environment where the
individual lives. We measured the activation level of
the sensors during the entire lifetime of the best indi-
viduals of each generation and we discovered that the
average activation level was 0.11 for the copy living in
the dark environment and 0.24 for the copy living in
the bright environment. In addition, we found that the
percentage of times each of the four input units (cor-
responding to the left, right, front, and back pairs of
sensors) is the most active one significantly varies at
birth, i.e., prior to learning, between the two environ-
ments (Fig. 13). This measure is obtained by allowing
an individual to live for one epoch prior to learning in
the two environments while measuring the percentage
of times each of the four input units is the most active
one.

The different types of stimuli the robots experience
in the two environments affect the type of teaching
input computed by the teaching network and allow
the robots to modify their standard weights (i.e., the
weights that determine their motor behavior) differ-
ently in the two environments.

At this point we may ask ourselves what is the role
of the inherited standard weights in the case of indi-
viduals that are allowed to learn during their life. For
example, one might think that the standard weights
incorporate the same general solution adopted by non-
learning individuals and that learning is used to re-
fine the inherited strategy by taking into consideration
the specificity of the current environment. If we com-
pare the performance exhibited prior to learning by
evolved individuals belonging to the learning popu-
lation with the performance of individuals belonging
to the non-learning population, we discover that this
is not the case. Individuals belonging to the learning
population perform on the basis of their inherited stan-
dard weights worse than individuals of the non-learning
population (see Nolfi and Parisi, 1997).3 This result
contrasts with the comparison between the two popu-
lations when performance is assessed after learning. In
these circumstances, as we said above, the individuals



Learning and Evolution 103

Figure 13. Percentage of time each of the four input units is the most active one during one epoch without learning (i.e., using the weight
values inherited at birth) in both the dark and bright environment. The measures are carried out on an individual evolved to learn during lifetime.
(F – front sensor (black); B – back sensor (dark-gray); L – left sensor (light-gray); R – right sensor (white)).

of the learning population outperform those of the non-
learning population.

This result implies that inherited standard weights
of learning individuals are selected not only for their
ability to solve the task (as shown by their performance
at birth prior to learning), but also to allow learning to
produce a good performance. In other words, the genes
(i.e., the inherited standard weights plus the inherited
teaching weights) of evolved individuals that are al-
lowed to learn do not incorporate a predisposition to
behave efficiently but apredisposition to learn to be-
haveefficiently.

To understand what a predisposition to learn can
mean in the case of our robots we should consider
two facts: a) initial conditions (e.g., initial weights)
can determine the course of learning by error min-
imization (Kolen and Pollack, 1990), and b) evolu-
tion can select appropriate initial weights for learning
(Belew, McInerney and Schraudolph, 1991). This im-
plies that the standard weights are selected in order to
enhance the adaptive advantage of changes produced
by learning. If we allow our individuals to learn start-
ing from random initial weights instead than from their
inherited standard weights, their performance will re-
main constantly low throughout their life (see Nolfi
and Parisi, 1997). Although the learning error will
progressively decrease, the weight change does not
improve the efficiency of their exploration of the envi-
ronment even if the inherited teaching weights are left
intact.

A predisposition to learn to explore the environment
more efficiently, therefore, is at least in part incorpo-
rated in the inherited standard weights. However, the
inherited teaching weights also incorporate a predispo-
sition to learn (or, more precisely, to produce adaptive
changes in the standard weights). If we allow our in-
dividuals to modify the genetically inherited standard
weights but we randomize the teaching weights, in this
case too learning will destroy whatever ability to ex-
plore is present at birth rather than increasing that abil-
ity (see Nolfi and Parisi, 1997). Moreover, if we let our
robots move using the output of the teaching units in-
stead of the output of the standard units, once again we
obtain a significant decrease in performance (see Nolfi
and Parisi, 1997) with respect to the case in which
self-generated teaching is used to modify the standard
weights that determine how the robots behave.

Therefore both the standard weights and the teaching
weights incorporate a genetically inherited predisposi-
tion to learn rather than a predisposition to behave. The
behavior of evolved robots emerges from the interac-
tion between the two set of weights and cannot be traced
back in part to one set and in part to the other set. More
precisely, behavior is the emergent result of the interac-
tion between standard weights, teaching weights, and
the environment.

Interestingly, the predisposition to learn does not
only consist in an ability to use the sensory patterns
coming from the sensors to adapt to the environment
but also in an ability to modify the patterns received



104 Nolfi and Floreano

Figure 14. Difference in the percentage of time each of the four
input units is the most activated one in the two environments for (1)
nonlearning individuals at birth, (2) learning individuals at birth, and
(3) learning individuals at the end of their life. Individuals evolved
for learning behave so that input units are activated more differently
in the two environments. This means that their behavior enhances
perceptual differences.

from the environment in order to select patterns which
produce adaptive changes. In other words evolved in-
dividuals havea predisposition to select useful learning
experiences. It was found, in fact, that evolved robots
which learn during lifetime behave at birth in a way
that enhance the perceived difference between the two
environment with respect to non-learning robots (see
Fig. 14).

To determine how the two environments differ in
the inputs that they make available to the learning and
nonlearning robots, we computed the percentage of cy-
cles in which each of the four input units was the most
active and we compared these percentages in the two
environments for both learning and non-learning indi-
viduals (details of how the measurement has been con-
ducted can be found in Nolfi and Parisi, 1997). The
differences in the activation level among the four input
units in the two environments reflect the different be-
haviors of an organism in the two environments. The
first column of Fig. 14 shows the average difference
between the stimuli perceived at birth in the two envi-
ronments by non-learning individuals. The second col-
umn shows the same average difference for the learning
individuals at birth, i.e., before any learning. The third
column shows the average difference for the learning
individuals at the end of life, that is, after learning has
had its effect. These data indicate that learning indi-
viduals perceive at birth the two environments as more
different than non-learning individuals (i.e., the differ-
ence between the first and second column is statisti-
cally significant, see Nolfi and Parisi, 1997). In other
words, learning individuals behave at birth in a way
that enhances perceived differences between the two

environments which in turn allow them to learn to pro-
duce two different behaviors in the two environments.

7. Co-Evolution of Plastic Neurocontrollers
for Competing Robots

In the previous section we examined a case in which
the environment included only abiotic elements. How-
ever, the external environment may also include other
organisms. Thus changes in the subjective environment
of one individual might be caused also by changes oc-
curring in other organisms. An interesting case from
the point of view of adaptation to changing environment
is when the environment of one individual includes an-
other organism co-evolving in competition (imagine
the case of prey and predator). In this case, in fact,
the environment will tend to change so to make the
traits of evolving individuals no longer useful for re-
productive success. It might thus happen that progress
achieved by one population is reduced or eliminated
by the other competing population. This phenomenon
is sometimes referred to as the “Red Queen Effect”
(van Valen, 1973), from the imaginary chess figure,
invented by novelist Lewis Carroll, who was always
running without making any advancement because the
landscape was moving with her.

We studied the case of two competing populations of
predator and prey robots (Floreano and Nolfi, 1997a,
1997b; Nolfi and Floreano, 1999). Two Khepera robots
were used in these experiments, one of which (the
Predator) was equipped with a vision module while
the other (the Prey) had a maximum available speed
set to twice that of the predator. The prey had a black
protuberance, which could be detected by the predator
everywhere in the environment (see Fig. 15). The two
species could evolve in a square arena 47× 47 cm in
size with high white walls so that predator could see
the prey (when it was within its own visual field) as a
black spot on a white background.

Both individuals were provided with eight infrared
proximity sensors (six on the front side and two on the
back) which had a maximum detection range of 3–4 cm
in the environment. For the predator we used the K213
module of Khepera which is an additional turret that
can be plugged in directly on top of the basic platform.
It consists of a 1D-array of 64 photoreceptors which
provide a linear image composed of 64 pixels of 256
gray-levels each, subtending a view-angle of 36◦. The
visual field was divided into five sectors of about 7◦

each corresponding to five simulated photoreceptors.
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Figure 15. Right: The Predator is equipped with the vision module (1D-array of photoreceptors, visual angle of 36◦). Left: The Prey has a
black protuberance which can be clearly detected by the predator at a distance up to 70 cm, but its maximum speed is twice that of the predator.
Both Predator and Prey are equipped with 8 infrared proximity sensors.

If the pixel with minimal intensity fell inside the first
sector, then the first simulated photoreceptor would be-
come active; if the pixel layed inside the second sector,
then the second photoreceptor would become active,
etc. We set the maximum wheel speed (in either direc-
tion) to 80 mm/s for the predator and 160 mm/s for the
prey. Therefore, we had a relatively slow predator with
a good vision system, and a faster prey with short-range
perception.

For both individuals the controller was a simple per-
ceptron comprising two sigmoid units with recurrent
connection. In the case of the predator, each output
unit received connections from five photoreceptors and
from eight infrared proximity sensors. In the case of the
prey, each output unit received input only from eight
infrared proximity sensors, but its activation value was
multiplied by 2 before setting the wheel speed, as stated
above.

Two populations of 100 individuals each were co-
evolved for 100 generations. Each individual was tested
against the best competitors of the ten previous gener-
ations (a similar procedure was used in (Sims, 1995;
Cliff and Miller, 1996). At generation 0, competitors
were randomly chosen within the same generation,
whereas in the other 9 initial generations they were
randomly chosen from the pool of available best indi-
viduals of previous generations. The competition ended
either when the predator touched the prey or after 500

motor updates (corresponding to 50 s at maximum on
the physical robot). The number of lifecycle (rang-
ing between 0 and 499) was used as fitness value for
both prey and predator. High values corresponded
to high fitness for the prey and to low fitness for the
predator.4

Two sets of experiments were conducted. In one set
the weights of the neural controllers were directly en-
coded into individuals’ genotype (i.e., individuals were
not able to adapt to their environment during lifetime).
In the other set the genotype encoded some “meta-
properties” of the synapses (as in the experiments de-
scribed in Section 5 the genotype encoded the sign of
the synapse, the learning rule, and the learning rate).
The weights of the synapses were assigned randomly
and were allowed to change during lifetime.

Figure 16 shows the average population fitness in
the case of the experiments conducted with non-plastic
individuals.

As expected, initially prey score very high, whatever
they might do, because predators are not good at catch-
ing them; for the same reason, initially predators score
very low. Very quickly a set of counter-phase oscilla-
tions emerge in the two populations, as also reported
by other authors (Sims, 1994, p. 36), but we never ob-
served dominance of one population on the other in
any of our evolutionary runs (even when continued for
500 generations). However, the fitness for the prey
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Figure 16. Co-evolutionary fitness measured in simulation in a typ-
ical experiments with non-plastic individuals. Average population
fitness of the two populations (pr – predator; py – prey). The fitness
values of the two species do not sum to one in each generation be-
cause each individual is tested against the best opponent recorded
from the previous 10 generations.

always tended to generate higher peaks due to position
advantage (even in the case of the worst prey and best
predator, the latter will always need some time to reach
the prey).

A remarkable aspect of these co-evolutionary ex-
periments is the variety and complexity of behavioral
strategies displayed by the two species. Figure 17
shows some typical tournaments recorded at differ-
ent generations. After few generations the prey moves
quickly around the environment and the predator at-
tacks only when the prey is at a certain distance (Fig. 17,
left). The strategy of the predator can be explained by
considering that, if the prey moves at high speed, as
in this case, simply trying to reach the prey by fol-

Figure 17. Behaviors recorded at interesting points of co-evolution representing typical strategies. Black disk is the predator, white disk is the
prey.

lowing it will not pay off given that the prey is faster
than the predator. Later on (Fig. 17, center) the prey
spins in place and, when the predator gets closer, it
rapidly avoids it. This behavior emerges because prey
that move too fast around the environment sometimes
cannot avoid an approaching predator because they
detect it too late (remember that the other robot is
more difficult to detect by infrared sensors than a large
white wall). Therefore, it pays off for the prey to wait
for the slower predator and accurately avoid it. How-
ever, the predator is smart enough to perform a small
circle after having missed the target and re-attack until,
by chance, the prey is caught on one of the two sides
(where wheels and motors do not leave space for sen-
sors). Predators of the following generations (Fig. 17,
right) lose their ability to avoid walls (which was not
required in the few previous generations because the
predator very quickly localized and approached the
prey). At the same time the prey resumes a rapid
wall following and obstacle avoidance which forces
the predator to get closer to walls and collide if the
prey is missed.

By analyzing the behavior obtained in simulations
throughout a longer evolutionary time, however, it
can be shown that the same type of strategies are re-
discovered over and over again (Nolfi and Floreano,
1999). This does not imply that the co-evolutionary
process is unable to find interesting solutions, as we
just saw. It only means that effective strategies may be
lost instead of being retained and refined. Such good
strategies, in fact, are often replaced by other strate-
gies that, although providing an advantage over the
current opponents, may be ineffective against the pre-
vious strategies. When, as in this case, newly gen-
erated strategies are specialized to defeat the current



Learning and Evolution 107

competitors but not the old ones co-evolution may end
in a cycle in which the same strategies are adopted over
and over again.

At this point we may ask whether general strate-
gies (i.e., strategies which can defeat several competi-
tors adopting different strategies) can be found. One
possible way to force co-evolution to produce gen-
eral strategies is to save and use as competitors all the
best individuals of previous generations (see Rosin and
Belew, 1997). In this way individuals able to defeat
a larger number of competitors, on the average, can
be selected (see Nolfi and Floreano, 1999). However,
individuals selected against all the competitors of the
previous generation are able to defeat most but not all
of them. There is always some strategy, often adopted
by competitors of several generation before, that they
are unable to defeat and that can defeat them (see Nolfi
and Floreano, 1999).

These results point to the conclusion that in cer-
tain tasks (and given certain control architectures) it
is always possible to find a simple strategy capable of
defeating another single, albeit complex and general,
strategy (although such a simple strategy is a special-
ized strategy, i.e., it is able to defeat only that particular
strategy and, of course, other similar strategies). If this
is really true, in other words, if completely general solu-
tions do not exist in some cases, we should re-consider
the ‘cycling problem’. From the point of view of non-
plastic individuals, the fact that co-evolutionary dy-
namics lead to a limit cycle in which the same type of
solutions are adopted over and over again should not be
considered as a failure but as an optimal solution. We
cannot complain that co-evolution does not find a more
general strategy capable of coping with all the strate-
gies adopted by the co-evolving population during a
cycle if such general strategies do not exist, given the
existing conditions (environment, sensory motor sys-
tem, architecture of the neurocontroller, etc.). The best
that can be done is to select the appropriate strategy
for the current counter-strategy, which is what actually
happens when co-evolutionary dynamics end in a limit
cycle.

On the other hand, plastic individuals (i.e., indi-
viduals that can change their strategy during lifetime)
have another option available. If these individuals pos-
seses a set of different strategies which are effective
against a variety of counter-strategies and are able
to select the strategy which is most appropriate to
the current competitor, they may be able to defeat a
larger number of competitors than non-plastic individ-

uals. In other words, plastic individuals can adapt to
changes occurring in the other populations during life-
time while non-plastic individuals can only adapt to the
same changes after a certain number of generations.
The ability to adapt during lifetime to the opponent’s
strategy would produce a significant increment in the
adaptation power of a single individual because onto-
genetic adaptations are much faster than phylogenetic
ones. Once individuals that are able to adapt to dif-
ferent counter-strategies during lifetime are selected,
we may also expect that the co-evolutionary process
will less likely fall into limit cycles. In this case, in
fact, sudden changes of strategy will be less likely to
produce advantage even in the short range.

The experiments conducted with plastic individuals
seem to confirm these hypotheses in the case of preda-
tors (see Floreano and Nolfi, 1997b). Predators, in fact,
reported higher average fitness than prey in six evolu-
tionary runs, except for short temporary oscillations
(Fig. 18). Furthermore, in all runs, the average fitness
of the predator population was more stable than that
of the prey. Relative performance of the two species
(i.e., how many times one species wins over the other)
in this condition significantly differed from the exper-
iments described in Fig. 17 in which individuals were
not allowed to change during lifetime. Here, predators
almost always outperformed prey. Although also in this
case behavioral strategies specifically tuned to the be-
havior of the competitor can be found, this pattern was
less marked than in the experiments with non-plastic
controllers.

More information can be gained by observing behav-
ioral patterns of the two competitors during individual
tournaments (Fig. 19). There is not much variation in

Figure 18. Average fitness across generations. Thick line, predator;
thin line, prey.
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Figure 19. Behaviors of co-evolved individuals with ontogenetic learning. Black disk is predator, white is prey.Left: Generation 20;Center:
Generation 70;Right: Generation 95.

the behavior of the predator. It always displays a very
good tracking ability across generations: once the prey
has been locked in its visual field, it quickly acceler-
ates to maximum speed until contact. As compared to
the experiments with non-plastic individuals described
above where the predator tended to efficiently track in
only one direction, here it can turn in both directions
at equal speed. For non-learning controllers proper
tracking in both directions would have required accu-
rate settings of all synaptic strengths from visual in-
puts (a rare solution that might be difficult to find on
the genotype space). Here, instead, since synapses are
temporarily increased depending on active visual units
(Floreano and Mondada, 1996; Flotzinger, 1996), in-
dividual adjustments of synapses take place when and
where required depending on current sensory input.
The trajectory on the center image of Fig. 19 shows an
evident example of synaptic adjustment. Here, while
the prey rotates always around the same circle, the
predator performs three turns on itself during which
synaptic values from the visual units are gradually in-
creased; at the fourth turn, the synaptic values will be
sufficiently high to cause a straight pursuit (eventually,
the prey will try to avoid the predator without suc-
cess). Finally, the temporary drop in performance of
the predator after generation 90 is due to a more precise
tracking combined with a slower motion (right image
of Fig. 19). Such behavior was probably developed
because the prey were also slower and more careful in
avoiding obstacles (including the predator).

Although activity-dependent synaptic change is
exploited by the far-sighted predator, not the same hap-
pens for the prey. Prey are faster with respect to the ex-
periment with non-plastic individuals, especially when
turning near walls (where IR sensors become active and

synapses temporarily strengthen), but plasticity does
not allow an increment of their behavioral repertoire.
Not even can they improve it because volatile changes
of the synaptic values imply that most of the time they
must re-develop on-the-fly appropriate strengths. Al-
though this can be well-suited for avoidance of static
obstacles, it does not represent an advantage when fac-
ing another fast-moving object such as the predator.

These results indicate that plastic predators are capa-
ble of adapting their strategies to the strategy adopted
by the current competitor during lifetime. Almost all
predators are able to adapt to the two different classes of
strategies adopted by the prey: (a) stay still or hidden
close to a wall waiting for the predator and eventu-
ally trying to escape when the IR sensors detect the
predator; (b) move fast in the environment, avoiding
both the predator and the walls) by selecting the appro-
priate counter-strategy during lifetime. This explain
why in these experiments predators are not compelled
to abandon their strategy when prey suddenly change
their counter-strategy. This is reflected by the fact that
their fitness is more stable than that of the prey across
generations. Instead, since the prey cannot develop
more effective strategies because of their limited sen-
sory ability, they display cyclic behaviors (as revealed
by both fitness values and behavioral analysis).5

8. Discussion

In this paper we have reviewed evidence that learn-
ing can enhance the adaptive power of evolution. In
Section 3 we saw that learning can help and guide
the evolutionary search even if characters acquired
through lifetime learning are not inherited. In parti-
cular we saw that learning and evolution might solve
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tasks that evolution alone is unable to solve. Moreover,
in Section 4, we showed that learning can produce an
increase in performance both ontogenetically and phy-
logenetically even if the learning task differs from the
task for which individuals are selected.

We also showed that learning individuals can out-
perform non-learning individuals in non-stationary en-
vironments by adapting during lifetime to their current
environment (Sections 6 and 7). Evolved individuals
are capable of detecting the type of environment in
which they are placed and of modifying their behavior
during lifetime accordingly in order to maximize their
fitness.

In Section 5 we showed that some characters (i.e.,
the connection weights in this case) can be extracted
from the regularities present in the environment instead
of being specified into the genotype. In the model des-
cribed in that section, the weight values emerge from
the interaction between genetically specified instruc-
tions and the environment.

We saw that information extracted from the environ-
ment can channel evolutionary search into promising
directions. In Sections 5 and 6, for example, we saw
that only weights departing from sensors which are
stimulated in a given environment (i.e., only weights
which have an effect on the corresponding behavior)
change during lifetime. In other words, the informa-
tion coming from the environments allows learning to
exploit the most interesting dimensions of the search
space.

Finally, we saw that evolution may channel learning
into promising directions. In the case of the exper-
iments described in Sections 5 and 6, the direction-
ality of learning is not fixed but is determined by the
inherited constraints (the combination of learning para-
meters and the teaching weights respectively) which are
themselves under evolution. Therefore the directional-
ity of learning is selected by evolution (i.e., evolution
selects the learning task). Since lifetime learning af-
fects the fitness of the individuals and consequently
affects also the choice of individuals selected for re-
production, evolution will tend to select individuals
that display good learning directions. In other words
evolution will tend to select inherited constraints that
produce ontogenetic changes which are adaptive on the
average.

We want to conclude this paper by discussing in the
next sections three general issues that can be raised on
the basis of the results of the experiments described
above.

8.1. The Role of the Interaction Between Learning
and Evolution

By exploring the adaptive functions of learning we
discovered that the interaction between learning and
evolution deeply alters both the evolutionary and the
learning process themselves. Evolution in interaction
with learning displays dynamics very different from
those which are observed in evolution alone. While
in non-plastic individuals the inherited characters are
directly selected for their ability to produce success-
ful behaviors, in the case of individuals that learn, the
characters are selected for their ability to incorporate a
predisposition to learn. This genetically inherited pre-
disposition to learn may consist of different things:

1) The presence of starting conditions at birth(e.g.,
initial weights for learning) that canalize learning
in the right direction. Evolution may select initial
weight matrices or network architectures that cause
a better and/or a faster learning. This has been shown
to happen both in the case where the learning task
and the evolutionary task are the same (for weight
matrices, see Belew et al., 1991; for network ar-
chitectures, see Miller et al., 1989) and in the case
where they are different (see Nolfi and Parisi, 1994).
In the latter case, evolution does not only select in-
dividuals that have a predisposition to better learn,
but also individuals that, by learning a certain task,
improve their performance with respect to the evo-
lutionary task (see Section 4).

2) An inherited tendency to behave in such a way that
the individual is exposed to the appropriate learn-
ing experiences. Evolution tends to select charac-
ters that produce initial behaviors that enhance the
possibility to learn and/or that increase the probabil-
ity to acquire adaptive characters through learning.
In other words evolution tends to select individuals
which have an initial behavior suitable for learn-
ing and not necessarily for solving the evolutionary
task (see initial back-and-rotate behavior of evolved
individuals described in Section 5, the behavior of
individuals described in Section 6 that enhance the
perceptual differences between two different envi-
ronments, and the behavior of evolved predators
turning in circle and then attack directly their prey).

Similarly, learning within an evolutionary perspec-
tive has quite different characteristics from learning
studied in isolation, as in “traditional” connectionist
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research (Rumelhart and McClelland, 1986). While in
individuals that learn but are not subjected to an evo-
lutionary process (e.g., neural networks trained with
supervised methods) learning is usually accomplished
by ignoring the characters of the individual prior to
learning (which are typically generated at random),
in evolving plastic individuals learning exploits such
starting conditions. In other words, when the learning
process itself is subjected to an evolutionary process,
learning does not necessarily tend to incorporate the
right solution to the problem; rather, it tends to pull
the learning individual in a direction that maximizes
the chances of acquiring adaptive characters by taking
into consideration its initial state. This explains the sur-
prising result described in Section 6 that self-generated
teaching inputs do not correspond to the desired motor
actions although they are capable of producing changes
that generate suitable motor actions (on this point see
also Nolfi and Parisi, 1993).

8.2. Extracting Supervision from the Environment
Through Learning

From the point of view of a natural or artificial organism
the external environment does not provide any direct
cue on how the agent should act to attain a given goal.
However agents receive a large amount of information
from the environment through the sensors. Such in-
formation (which is a function of both environmental
structure and motor actions) may be used not only to
determine how to react in different environmental cir-
cumstances but also to adapt to the current environment
through lifetime learning. For example, a robot may
learn the consequences of different actions in differ-
ent environmental contexts or it may learn to classify
sensory states not only on the basis of the currently
perceived sensory pattern but also on the basis of the
preceding and following sensory patterns.

Theoretically, in an evolving population, any ability
which can be acquired through lifetime learning can
also be genetically acquired through evolution. How-
ever these two ways of adapting to the environment
differ in one important respect: ontogenetic adaptation
can rely on a very rich, although less explicit, amount
of supervision. From the point of view of phyloge-
netic adaptation, individuals are evaluated only once
on the basis of a single value which codifies how well
they were adapted to their environment throughout all
their lifetime (i.e., the number of offspring in the case
of natural evolution and the fitness value in the case

of Artificial Evolution). Instead, from the point of
view of ontogenetic adaptation, individuals receive in-
formation from the environment through their sensors
throughout their whole lifetime. However, this huge
amount of information encodes only very indirectly
how well an individual did in different moments of its
own lifetime or how it should modify behavior in order
to increase its own fitness. The problem is how such
information can be transformed into an indication of
what the agent should do or how well it is doing.

As we have shown in Sections 5–7, evolution can
solve this type of problem by producing subsystems
capable of autonomously extracting supervision infor-
mation that can be used for fast lifetime learning. In
the case of the experiments described in Section 6, the
control system was divided into two sub-modules of
which the former had the function of determining how
to react to the current sensory state and the latter had the
function of generating a teaching signal for the former.
By subjecting the weights of the two sub-networks to
an evolutionary process, we showed that individuals
emerge which learn during their lifetime to adapt to
the environment through self-generated teaching sig-
nals. These individuals are able to transform the infor-
mation which they receive from the environment into
useful teaching inputs. Similarly, in the experiments
described in Sections 5 and 7, evolution selects the
meta-properties of the synaptic weights which are able
to channel the changes driven by the sensory states in
the right directions.

8.3. Intelligence and Generality

A key feature of intelligent systems is generality, i.e.,
the ability to carry out a certain task in different envi-
ronmental conditions or the ability to carry out different
tasks. In the context of predators and prey, for exam-
ple, predators should be able to catch different types of
prey.

By evolving simple neural controllers we can ob-
tain interesting solutions. But these solutions often lack
generality. Consider the case of non-plastic predators
and prey described in Section 7. These systems are
interesting because can solve non-trivial tasks in sim-
ple ways. However, they are strongly dependent on the
current state of the environment. If the environment
changes (e.g., the strategy of the competitor changes)
they may become unable to solve their task.

These two aspects (i.e., simplicity and lack of gen-
erality) are two sides of the same coin. These systems
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are able to solve non-trivial task with simple strategies
because they exploit all the regularities available in the
environment. One might conclude that, in order to
be general, systems should be more autonomous from
(less dependent on) the environment. In other words,
intelligent systems should rely less on the regularities
available in the environment and more on their internal
“nervous mechanisms”. Such systems will probably
require more internal complexity than the simple non-
general systems which we described. The attempt of
(good old fashioned) artificial intelligence to build gen-
eral purpose systems (e.g., universal planners), mostly
ignoring the characteristics of the external and of the
internal environment, is a natural consequence of this
line of thought.

Fortunately, this is not the only available option.
Generality may also be achieved by systems that, in-
stead of incorporating a single general strategy, posses
a collection of simple strategies that are appropriate
in different environmental circumstances and a mech-
anism which is able to select the strategy which is ap-
propriate to the current environment.

To clarify this point, let us distinguish between ‘full-
general’ and ‘plastic-general’ individuals (see Fig. 20).
Full-general individuals have a single strategy which
is effective in different environmental circumstances.
Plastic-general individuals, on the contrary, possess a

Figure 20. Left: Full-general individuals. The large gray circle represent a single general strategy which requires a quite complex control
system.Right: Plastic-general individuals. The small gray circles represents a collection of simple non-general strategies. Arrows indicate a
mechanism which is able to select the strategy appropriate to the current environmental condition.

set of different strategies which are effective in differ-
ent environmental circumstances. Although these two
types of individuals seem equivalent, there are some
subtle differences. Full-general individual do not need
to adapt during lifetime to changes occurring in the en-
vironments because their strategy can face any environ-
mental circumstances. Plastic-general individuals, on
the other hand, should be able to select the appropriate
strategy for their current competitor. In other words,
they should be able to adapt through ontogenetic adap-
tation. From this point of view full-general individuals
will be more effective because they can provide imme-
diately the correct answer to the current environmental
state. On the other hand, as we said above, it may be
that in certain conditions a full-general individual can-
not be selected because a full-general strategy does not
exist or because it is too difficult to find for the evolu-
tionary process. In this case, the only option left is that
of plastic-general solutions.

What is important to notice is that full-general and
plastic-general individuals significantly differ in their
internal organization. In general, full-general systems,
in order to behave effectively in very different environ-
ments, need to extract high level regularites from the
external environment which are not directly available
in the sensory patterns. In order to extract high level
regularitis these systems need quite complex control
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systems. Plastic-general individuals on the other hand,
by relying on low level regularities directly available
from the sensory information, will require a collection
of simple strategies that may be produced by much
simpler control systems. These strategies will be of
the same type of those adopted by specialized individ-
uals which adopt simple specific solutions.

Notes

1. One might wonder whether Lamarckian evolution (i.e., an evo-
lutionary process in which characters acquired through learning
are directly coded back into the genotype and transmitted to off-
spring) could be more effective that Darwinian evolution (i.e., an
evolutionary process in which characters acquired through learn-
ing are not coded back into the genotype). Ackley and Littman
(1994) for instance claimed that in artificial evolution, where in-
herited characters can be easily coded into the genotype given that
the mapping between genotype and phenotype is generally quite
simple, there is no reason for not using Lamarckian evolution.
Indeed the authors showed that Lamarckian evolution is far more
effective than Darwinian evolution in a stationary environment.
On the other hand, as shown by Sasaki and Tokoro (1997), Dar-
winian evolution largely outperforms Lamarkian evolution when
the environment is not stationary or when different individuals
are exposed to different learning experiences.

2. It should be noticed that such encoding is rather irrealistic from
a biological point of view and one might correctly argue that
biological genotypes do not encode characteristics of individual
synapses. However, here the point is that of studying the inter-
action between learning and evolution by preventing evolution
alone from finding a precise behavioral solution.

3. This result is also obtained with evolved self-teaching networks
living in a stationary environment (see Nolfi and Parisi, 1993,
1994).

4. In (Nolfi and Floreano, 1999) we used a slightly different fitness
function. In this case the fitness in each competition was simply
1 for the predator and 0 for the prey if the predator was able to
catch the prey and, conversely 0 for the predator and 1 for the
prey if the latter was able to escape the predator.

5. Prey can develop more interesting behavior however if their sen-
sory system is enriched (see Nolfi and Floreano, 1999).
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