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Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods

Objectives:

Reinforcement Learning in Deep Artificial Neural Networks

REINFORCE with  BASELINE algorithm

Actor-Critic algorithm

Eligibility traces for policy gradient

Model-based versus Model-free RL

Part 1: Introduction

Objectif: get ready to apply RL or  read research papers in RL

 final lecture on ‘Foundations of RL’



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Chapter:  13.5-13.8. 

8.1 + 8.2



Chess Artificial neural network 

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats  Lee Sedol

Go

Deep reinforcement learning



(previous slide)

The success of deep artificial neural networks in Chess and Go has spurred a 

renewed interest in Reinforcement Learning.



action Move piece

input

output

Neural network parameterizes 

actions in the output as a 

function of continuous state s.
One output per action. 

Learn weights by playing against itself.

Artificial Neural Networks for Reinforcement Learning

(Backprop = gradient descent rule in multilayer networks)

Two Methods:

- TD-learning

- Policy Gradient

can also be combined:

 actor-critic networks



(previous slide)

Deep Reinforcement Learning (DeepRL) is reinforcement learning in a deep 

network. Suppose that each output unit of the network corresponds to one action 

(e.g. one type of move in chess). Parameters are  the weights of the artificial 

neural network.

Actions are chosen, for example, by softmax on the output-values.

Weights are learned by playing against itself – doing gradient descent on an error 

function E (Loss function)

Two important classes of RL algorithms are TD-learning and Policy Gradient.

An actor-critic architecture combines the advantages of both.



𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝑄(𝑠, 𝑎1)

Review: Q-values and V-Values

expected total discounted reward 

starting in s with action 𝑎1:

𝑄(𝑠′, 𝑎3)

𝑄(𝑠, 𝑎1)

expected total discounted reward 

starting in s : V(𝑠)

V(𝑠)

V(𝑠′)𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘 ]2

take gradientignoretarget

optimize by semigradient on Loss function

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑉 𝑠

′|𝒘 - V 𝑠|𝒘 ]2

take gradientignoretarget

optimize by semigradient on Loss function



(previous slide)

The consistency condition of TD learning, can be formulated by an  error function:

Either for Q-values

or for V-values 

This error function will depend on the weights w.

We can change the weights by semi-gradient descent on the error function. This 

leads to the Backpropagation algorithm of ‘Deep learning’

E = 0.5 [ r + g Q(s’,a’)- Q(s,a) ]2

E = 0.5 [ r + g V(s’,a’)- V(s,a) ]2



Aims for today:

- Understand the principles of 

Deep Reinforcement-learning 

in Artificial Neural Networks.

- Understand How the Actor-Critic combines

Policy Gradient methods and TD methods

- Understand Difference between Model-based

and Model-free RL 



Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Introduction

2. From Policy gradient to Deep RL

Part 2: From policy gradient to Deep Reinforcement Learning

Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods



𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

Review Policy Gradient

Aim:

update the parameters q

of the policy p(a|s,q)

Implementation:

- play episode from start to end;

- record rewards in each step;

- update the parameters q



(previous slide and next slide)

Policy gradient methods are and alternative to TD methods.

We consider a single episode  that started in state 𝑠𝑡 with action 𝑎𝑡 and ends after 

several steps in the terminal state 𝑠𝑒𝑛𝑑
The result of the calculation gives an update rule for each of the parameters.

The update of the parameter 𝜃𝑗 contains several terms.

(i) the first term is proportional to the total accumulated (discounted) reward, also 

called return 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡

(ii) the second term is proportional to gamma times the total accumulated 

(discounted) reward but starting in state 𝑠𝑡+1
(iii) the third term is proportional to gamma-squared times the total accumulated 

(discounted) reward but starting in state 𝑠𝑡+2
(iv) …

We can think of this update as one update step for one episode. Analogous to the 

terminology used by Sutton and Barto, we call this the Monte-Carlo update for one 

episode.

The log-likelihood trick was explained earlier. Since this is a sampling based 

approach (1 episode=1 sample) each of the terms is proportional to ln p, 



Review Policy Gradient: REINFORCE (episodic)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 ] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃 ]D𝜃𝑗 ∝

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

Calculation yields several terms of the form

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1 ] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

action

state

state

action

action

end of trial

EPISODIC: fixed start state 𝑠𝑡 , fixed terminal state 𝑠𝑒𝑛𝑑



(next slide)

The policy gradient algorithm is also called REINFORCE. It if formulated here for 

fixed starting state and assumes the existence of a terminal state. Note that 

updates are only implemented at the end of the trial (i.e., once the agent has 

arrived in the terminal state). 

As discussed in a previous lecture and in the exercise session, subtracting the 

mean of a variable helps to stabilize the algorithm.

There are two different ways to do this.

(i) Subtract the mean return (=value V) in a multistep-horizon algorithm. This is 

what we consider here in this section. NOW!

(ii) Subtract mean expected reward PER TIME STEP (related to the delta-error of      

TD learning ) in a multi-step horizon algorithm.

This is what we will consider in section 3 under the term Actor-Critic.



Subtract a  baseline

we derived this online gradient rule for multi-step horizon

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 ] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 + D𝜃𝑗 ∝

But then this rule is also an online gradient rule

with the same solution (in expectation)
because a baseline shift drops out if we take the gradient

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝒃(𝒔𝒕)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 ] +D𝜃𝑗 ∝

+ 𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡 − 𝒃(𝒔𝒕+𝟏)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃 ] + …

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡 ] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃 + …



(previous slide)

Please remember that the full update rule for the parameter 𝜃𝑗
in a multi-step episode contains several terms of this form; here only the first two 

of these terms are shown.

Similar to the case of the one-step horizon, we can subtract a bias b from the 

return 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 without changing the location of the maximum of the total expected 

return.

Moreover, this bias 𝑏(𝑠𝑡) can itself depend on the state 𝑠𝑡. 
Thus the update rule now has terms

D𝜃𝑗 ∝ [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑏(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 ]

+g[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1 − 𝑏(𝑠𝑡+1)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃 ]

+g2[𝑅𝑠𝑡+2→𝑠𝑒𝑛𝑑
𝑎𝑡+2 − 𝑏(𝑠𝑡+2)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+2 𝑠𝑡+2, 𝜃 ]

+ …



Subtract a reward baseline

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑏(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃 ]+…D𝜃𝑗 ∝

- The bias b can depend on state s

- Good choice is b =‘mean of [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 ]’

 take 𝑏 𝑠𝑡 = 𝑉 𝑠𝑡
 learn value function V(s)

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡



(previous slide

Is there a choice of the bias 𝑏 𝑠𝑡 that is particularly good?

One attractive choice is to take the bias equal to the expectation (or empirical 

mean). The logic is that if you take an action that gives more accumulated 

discounted reward than your empirical mean in the past, then this action was good 

and should be reinforced.

If you take an action that gives less accumulated discounted reward than your 

empirical mean in the past, then this action was not good and should be 

weakened. 

But what is the expected discounted accumulated reward? This is, by definition, 

exactly the value of the state. Hence a good choice is to subtract the V-value.

And here is where finally the idea of Bellman equation and TD learning comes in 

through the backdoor: we can learn the V-value, and then use it as a bias in policy 

gradient.



Actions:

-Learned by

Policy gradient

- Uses V(𝒙) as baseline

Value function:

- Estimated by Monte-Carlo

-provides baseline b=V(𝒙)
for action learning

V(𝒙)

𝒙 𝒙

Learning two Neural Networks: actor and value

𝒙 = states from

episode:

𝑠𝑡, 𝑠𝑡+1, 𝑠𝑡+2,

action

state

state

action

action

end of trial



(previous slide)

In the latter case we have two networks:

The actor network learns a first set of parameters, called 𝜃 in the algorithm of 

Sutton and Barto.

The value network learns a second set of parameters, with the label w .

The value b(𝑥 = 𝑠𝑡+𝑛) =V(𝒙) is the estimated total accumulated discounted 

reward of an episode starting at 𝑥 = 𝑠𝑡+𝑛

The weights of the network implementing V(x) can be learned by Monte-Carlo 

sampling the return: you go from state s until the end, accumulate rewards, and 

calculate the average over all episodes that have started from (or transited 

through) the same state s. (See Backup-diagrams and Monte-Carlo of earlier 

lecture).

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛

What matters is the difference [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]



action

state

state

action

action

end of trial

REVIEW: Monte-Carlo Estimation of V-values (tabular)
𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾

𝟐𝑟𝑡+2+ 𝛾
𝟑 𝑟𝑡+3Return(s)=

single episode starting in state s0 also allows to 

update  V(s) of children states



(previous slide, Review). We can use Monte-Carlo estimates for V-values

In this (version of the) algorithm you first open V-estimators for all states.

For each state s that you encounter, you observe the sum of (discounted) rewards 

that you accumulate until  the end of the episode. The total accumulated 

discounted reward starting from s is the ‘Return(s)’

After many episode you estimate the V-values V(s) as the average over the 

Returns(s).

Note that the above estimations are done in parallel for all states s that you 

encounter on your path. This includes ‘children states’.

Also note that the Backup diagram is much deeper than that of TD-learning, since 

you always continue until the end of the episode before you can update V-values 

of states that have been encountered many steps  before.



Actions:

-Learned by

Policy gradient

- Uses V(𝒙) as baseline

Value function:

- Estimated by Monte-Carlo

-provides baseline b=V(𝒙)
for action learning

V(𝒙)

𝒙 𝒙

Learning two Neural Networks: actor and value

𝒙 = states from

episode:

𝑠𝑡, 𝑠𝑡+1, 𝑠𝑡+2,

Parameters 

are the network

weights q

Parameters 

are the weights w



(previous slide)

In the latter case we have two networks:

The actor network learns a first set of parameters, called 𝜃 in the algorithm of 

Sutton and Barto.

The value network learns a second set of parameters, with the label w .

The value b(𝑥 = 𝑠𝑡+𝑛) =V(𝒙) is the estimated total accumulated discounted reward 

of an episode starting at 𝑥 = 𝑠𝑡+𝑛

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛



‘REINFORCE’ with baseline From book:

Sutton and Barto, 2018

𝑟1 𝑟𝑇

𝑟𝑘



(previous slide)

Algorithm in pseudocode taken from the book of Sutton and Barto.

For the actor, the algorithm evaluates terms of the form

Where the return is 𝐺 = 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛

And the bias estimate is  v(𝑠𝑡+𝑛) = 𝑏(𝑠𝑡+𝑛)

The terminal state in their notation occurs at time T and 

the initial state has index 0. 

For the value function, they use Monte-Carlo estimation of the total accumulated 

reward in one episode (see previous slide).

[𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛 −𝑏(𝑠𝑡+𝑛)]

𝑑
𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+𝑛 𝑠𝑡+𝑛, 𝜃 ]



Why subtract the mean? 

Subtracting the expectation provides  estimates

that have (normally) smaller variance (look less noisy)  

Note: in multi-step RL, the minimal variance is not exactly at

bias=expection.

Reason: correlations 



(previous slide)

Why is it useful to subtract the mean?

Whatever the choice of baseline, the algorithm should eventually converge to the 

same set of parameters. However, since the algorithm is based on stochastic gradient 

descent or ascent (i.e., the online rule instead of the full batch rule), the algorithm 

makes noisy steps that only go on average in the right direction.

Subtracting a baseline that is close to the mean generally reduces the noise. 

The example  with a product of independent variables shows that by subtracting the 

mean of x,  the noise is considerable reduced in each of the samples! (Last week)

Unfortunately, in a multi-step reinforcement learning scenario, the minimal noise is not 

exactly the situation where one subtracts the mean because of correlations, but (at 

least we can assume that) it is close to it.



Deep reinforcement learning: exploit state representation

Network for choosing action:
Optimized by policy gradient

2nd output for value of state:

input

output

action: Advance king

learning:

 change connections

aims:

- learn value  V(s) of position  

- learn action policy to win

Learning signal:

- h[actual Return - V(s)]

𝑉 𝑠

basic idea of

of alpha-zero



(previous slide)

The value unit can either take directly the input (and hence forms a separate 

network) or it can  also share a large fraction of the network with the policy 

gradient network (actor network).

The actor network learns a first set of parameters, called 𝜃 in the algorithm of 

Sutton and Barto. The value unit learns a second set of parameters, with the label 

wj for a connection from unit j to the value output.

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛

What matters is the difference [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]



Summary: Deep REINFORCE with baseline substraction

Network for choosing action:
Optimized by policy gradient

2nd output for value of state:

input

output

action

 

𝑗

𝑤𝑗𝑥𝑗(𝑡)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 ]+…D𝜃𝑗 ∝

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]𝑥𝑗(𝑡) +D𝑤𝑗 ∝

𝑤𝑗

𝑥𝑗

𝑉 𝑠𝑡 =



(previous slide)

Here the value unit receives input from the second-last layer. Units there have an 

activity xj (j is the index of the unit) which represent the current input state in a 

compressed, recoded form  (The network could for example be a convolutional 

network if the input consists of pixel images of outdoor scenes.

The actor network learns a first set of parameters, called 𝜃 in the algorithm of 

Sutton and Barto. The value unit learns a second set of parameters, with the label 

wj for a connection from unit j to the value output.

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛

What matters is the difference [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]

Updates are: [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 ]+…D𝜃𝑗 ∝

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]𝑥𝑗D𝑤𝑗 ∝
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Policy Gradient and Actor-Critic Methods



(previous slide)

We continue with the idea of two different types of outputs:

A set of actions ak , and a value V.

However, for the estimation of the V-value we now use the ‘bootstrapping’ 

provided by TD algorithm (see previous weeks) rather than the simple Monte-

Carlo estimation of the (discounted) accumulated rewards in a single episode.

The networks structure remains the same as before:

An actor (action network) and a critic (value function).

Sutton and Barto reserve the term ‘actor-critic’ to the network where V-values are 

learned with a TD algorithm.

However, other people would also call the network that we saw previously in 

section 2 as an actor-critic network and the one that we study now is then called 

‘advantage actor critic’ or AAC.



Actor-Critic =  ‘REINFORCE’ with TD bootstrapping 

advance push 

left

actions

value

TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 −𝑉 𝑠𝑡 ]d = h

𝑉 𝑠

- Estimate V(s)
- learn via TD error



(previous slide)

Bottom right: Recall from the TD algorithms that the updates of the weights are 

proportional to the TD error d  

In the actor-critic algorithm the TD error  is now also used as the learning signal 

for the policy gradient:

TD error: The current reward 𝑟𝑡 at time step t
is compared with the expected reward for this time step  [𝑉 𝑠𝑡 − 𝛾𝑉 𝑠𝑡 ]

[Note the difference to the algorithm in section 6:

There the total accumulated discounted reward 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡

was compared with V(𝑠𝑡)]



Actor-Critic =  ‘REINFORCE’ with TD bootstrapping 

𝑟
𝑟

TD error
action

state

state



Previous slide. 

Pseudocode of Algo in the notation of Sutton and Barto (2018) 



𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

Comparison: ACTOR-CRITIC  (versus REINFORCE with baseline]

Aim of actor:

update the parameters q

of the policy p(a|s,q)

𝑉 𝑠𝑡

𝑉 𝑠𝑡+1

𝑟𝑡

update proportional toTD-error

d = h

𝑉 𝑠

[𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 −𝑉 𝑠𝑡 ]

Aim of critic: estimate V using TD learning

action

state

state



(previous slide)

For a comparison of ‘actor-critic’ with  ‘REINFORCE with baseline’

In both algorithms (actor critic and REINFORCE with baseline), the actor learns 

actions via policy gradient.

In the actor-critic algorithm the critic learns the V-value via bootstrap TD-learning 

(see week 9). 

In the actor-critic algorithm the TD error  is  also used as the learning signal for the 

policy gradient.

The backup diagram of actor-critic is short:

action

state

state



𝑠

𝑠′

a1 a2 a3

𝑠"

a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

Comparsion: REINFORCE with baseline (vs actor-critic)

1. Aim of actor in REINFORCE

update the parameters q

of the policy p(a|s,q)

𝑉 𝑠𝑡

𝑉 𝑠𝑡+1

𝑟𝑡

2. update proportional to 

RETURN-error: 

𝑉 𝑠

3. Aim of critic: estimate V (using Monte-Carlo)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑉(𝑠𝑡)]

action

state

state

action

action

state

state

action

action

end of trial



(previous slide)

We continue the comparison with REINFORCE with baseline. 

In both algorithms (actor critic and REINFORCE with baseline), the actor learns 

actions via policy gradient.

In the REINFORCE algorithm the baseline estimator learns the

V-value via Monte-Carlo sampling of full episodes. 

In the REINFOCE algorithm the mismatch between actual return 

and estimated V-value  (‘RETURN error’) is  used as

the learning signal for  the policy gradient.

The Backup diagram is long: 

action

state

state

action

action

end of trial



Quiz: Policy Gradient and Deep RL

Your friend claims the following. Is he right?

[ ] Even some policy gradient algorithms use V-values 

[ ] V-values for policy gradient can be calculated in a separate 

deep network (but some parameters can be shared with the actor network)

[ ] The actor-critic network has basically the same 

architecture as deep REINFORCE with baseline: in both

architectures one of the units represents the V-values 

[ ] While actor-critic uses ideas from TD learning, 

REINFORCE WITH BASELINE does not.

[x]

[x] 

[x]

[x]



Previous slide. 

This is a repetition of an earlier slide.



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Terminology for Actor-Critic

Sutton and Barto

and this class:

Some others

REINFORCE WITH BASELINE                   Actor-Critic Architecture

(in general sense)

Actor-Critic Algorithm       Advantage Actor-Critic Algorithm

(in narrow sense)

V(𝒙
)

𝒙 𝒙
𝒙 = states
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(previous slide)

Two weeks ago we discussed eligibility traces.

It turns out that policy gradient algorithm have an intimate link with eligibility 

traces. In fact, eligibility traces arise naturally for policy gradient algorithms.

In standard policy gradient (e.g., REINFORCE with baseline) we need to run each 

time until the end of the episode before we have the information necessary to 

update the weights.

The advantage of eligibility traces is that updates can be done truly online (similar 

to the actor critic with bootstrapping).



Actor-critic with eligibility traces 

- Online algorithm

- Actor learns by policy gradient

- Critic learns by TD-learning

- For each parameter, one eligibility trace

- Update eligibility traces while moving

- Update weights proportional to TD-delta and eligibility trace



(previous slide)

The idea of policy gradient is combined with the notion of eligibility traces that we 

had seen two weeks ago.

The result is an algorithm that is truly online: you do not have to wait until the end 

of an episode to start with the updates.



Review:  Eligibility Traces

Idea: 

- keep memory of previous state-action pairs

- memory decays over time

- Update an eligibility trace for state-action pair

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎 + 1 if action a chosen in state s

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎l decay of all traces

- update all Q-values:

DQ(s,a)=h  [r-(Q(s,a)- g Q(s’,a’))] e(s,a)
Here: tabular SARSA 

with eligibility trace
TD-delta

Tabular: parameters Q(s,a)
eligibility trace e(s,a)

One eligibility trace per parameter



(previous slide)

This the SARSA algorithm with eligibility traces  that we had seen two weeks ago. 

We had derived this algo for a tabular Q-learning model as well as for a network 

with basis functions and linear read-out units for the Q-values Q(s,a).

In the latter case it was not the Q value itself that had an eligibility trace, but the 

weights (parameters) that contributed to that Q-value.

We now use the same idea.



Eligibility Traces for actor-critic 

Idea: 

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

increase of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

- update all parameters of ‘actor’ network:

D𝜃𝑘=h  [r-( V(𝑠𝑡)-g V(𝑠𝑡+1))] 𝑧𝑘 Here: policy gradient 

with eligibility trace

(actor network)
TD-delta

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝜃𝑘
ln[𝜋(𝑎|𝑠, 𝜃𝑘)]



(previous slide)

Eligibility traces can be generalized to deep networks.

Here we focus on the actor network.

For each parameter  𝜃𝑘 of the network we have a shadow parameter 𝑧𝑘 : the 

eligibility trace.

Eligibility traces decay at each time step (l <1) and are updated proportional to the 

derivative of the log-policy. Interpretation: 

The update of the eligibility trace can be seen as a ‘candidate parameter update’ –

but it is not yet the ‘real’ update of the actual parameters.

The update of the actual parameters 𝑤𝑘 of the actor network are proportional to 

the eligibility trace 𝑧𝑘 and the TD-error 

Parameters are  updated at each time step of the episode (as opposed to Monte-

Carlo where one has to wait for the end of the episode).  Hence ‘true online’.

𝛿 = [𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 −𝑉 𝑠𝑡 ]

= [𝑟𝑡 − [𝑉 𝑠𝑡 − 𝛾𝑉 𝑠𝑡+1 ]]



NETWORK for Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters  q

Eligibility traces of actor have parameters z.

The critic network has parameters w.

Eligibility traces of critic have parameters z.

Actor chooses actions with policy p

V(𝒙)

𝑆 𝑆

actor output

q,

TD

w, z 𝑧
wq

w

q



(previous slide) Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters  q

While the critic network has parameters w.

The actor network is learned by policy gradient with eligibility traces.

The critic network by TD learning with eligibility traces.

Candidate updates are implemented as eligibility traces z.



Actor-Critic  with Eligibility traces  (bootstrapping/TD trick) 

𝑟
𝑟

TD error
action

state

state



(previous slide) Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters  q

While the critic network has parameters w 

The actor network is learned by policy gradient with eligibility traces.

The critic network by TD learning with eligibility traces.

Note that Sutton and Barto include a discount factor g (in the update of the eligibility 
trace) but in the exercises we will see that the discount factor can (to an excellent 
approximation) be absorbed into l.  This algo is for ‘episodic’, i.e. problem with 
terminal states (which causes the step  ‘I  g I ‘; we drop this step later)

V(𝒙)

𝑆 𝑆

actor output

q

TD

w 



Quiz: Policy Gradient and Reinforcement learning

[ ] While actor-critic uses ideas from TD learning, 

REINFORCE with baseline uses Monte-Carlo 

estimates of V-values

[ ] Eligibility traces are ‘shadow’ variables for each parameter

[ ] Eligibility traces appear naturally in policy gradient algos.

[x]

[x]

[x] 



(your comments)

The proof of the last item is what we will sketch now – proof in the exercises.



Introduction to Reinforcement Learning

Two types of algo with different philosophy

TD learning Policy Gradient 

tabular

continuous/

function approx

Bellman eq., 

Q/V values, Bootstrap

Direct action modeling

Not Bootstrap

temporal smoothing eligibility traces /n-step   eligibility traces (natural)

SARSA(l), Q(l) REINFORCE (l) w. baseline 

yes, ad hoc, heuristic

semi-gradient

yes, natural, but slow

Actor-critic with eligibility traces

and TD-updates



Previous page

Summary: Reinforcement Learning has two major types of algorithms, i.e. TD-learning 

and Policy Gradient.

The advantage of TD learning is the bootstrapping effect. Combined with ad-hoc 

eligibility traces it yields powerful algorithms for the tabular setting. Excellent example are 

The advantage of policy gradient are two-fold: 

(i) since we optimize directly the action outcomes, effects of function approximation 

(such as smoothing, imprecise representations of different cases) are automatically 

taken into account

(ii) In the continuing setting, eligibility traces arise naturally.

By default (without baseline subtraction) the algorithm is slow.

The best way to add baseline subtraction is the actor-critic architecture.

It combines the best of both worlds, since the V-value for the base line uses TD learning.

SARSA(l) and  Q(l)



Introduction to Reinforcement Learning

Two types of algo with different philosophy

TD learning Policy Gradient 

tabular

continuous/

function approx

Bellman eq., 

Q/V values, Bootstrap

Direct action modeling

Not Bootstrap

temporal smoothing eligibility traces /n-step   eligibility traces (natural)

SARSA(l), Q(l) REINFORCE (l) w. baseline

yes, ad hoc, heuristic

semi-gradient

yes, natural, but slow

Actor-critic with eligibility traces

and TD-updates

Lecture RL1+2

Lecture RL 3

Lecture RL4

Lecture RL5



Previous page

Summary:

During the first 7 weeks we covered in 5 lectures all the major types of algorithms.

Today is the end of the ‘Introduction’ part.

We are now ready to apply the algorithms in various applications –

or study specific topics such as the relation to biology and distributed hardware.

This will be done in the coming weeks.

At the end of the lecture today,  you should be able to read current literature on 

Reinforcement Learning.



Exercise session now:

Computer exercise



your notes
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Summary: Eligibility traces from Policy Gradient

‘Policy Gradient Theorem’:

An algorithm with eligibility traces arises naturally 

in the frame work of policy gradient.

Proof: assumes setting of ‘continuing’ environment

(as opposed to episodic).

Aim:   optimize returns from ALL states 



Review: episodic setting versus infinite horizon continuing setting

action

state

state

action

action

end of 

episode

action

state

state

action

action

terminal state 

episode never ends:

continuing setting



Previous slide. 

Episodic setting means that we have a fixed start state and a terminal state.

Once we have arrived at the terminal state we put the agent back to the start 

state.

Continuing setting means that every state is a possible start state. The 

environment allows loops. There is no strict terminal state since we can always 

imagine that the agent is from the nominal  ‘terminal state’ automatically moved 

on to a (probabilistically selected) state inside the environment.

In both cases rewards can be collected at any state in the environment.



Review: Policy Gradient over multiple time steps (episodic)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 ] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃 ]D𝜃𝑗 ∝

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

Calculation yields several terms of the form

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1 ] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

Optimize RETURN from starting state 𝑠𝑡:

action

state

state

action

action

end of 

episode



Previous slide. 

This is a repetition of an earlier slide.



NOW: Policy Gradient over multiple time steps (infinite horizon)

Optimize EXPECTED average RETURN from ALL STATES:

Return from starting state 𝑠𝑡

+ Return from next state 𝑠𝑡+1

+ Return from next state 𝑠𝑡+2

+ Return from next state 𝑠𝑡+3

E[

… Return from 𝑠𝑡+𝐾 ]

1

𝐾

(and take limit           )𝐾 → ∞



Previous slide. 

The Return from the first state is the sum over all future (discounted) rewards 

starting at 𝑠𝑡
The Return from the next state is the sum over all future (discounted) reward

starting at   𝑠𝑡+1
… and so forth.

But the aim is to optimize the Expected Returns from ALL STATES.

This will give many terms



5. Policy Gradient over multiple time steps (Preparation for Exercise)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 ] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃 ]D𝜃𝑗 ∝

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1 ] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

Step 1: Rewrite 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 = 𝑟𝑡+𝑛+𝛾𝑟𝑡+1 + 𝛾2 𝑟𝑡+2+𝛾

3 𝑟𝑡+3

Step 2: Use same update formula, but for state 𝑠𝑡+1

Step 3:  Sum and reorder terms according to 𝑟𝑡+𝑛

Blackboard



Previous slide. 

This is the start of the calculations for the blackboard part.

It will also appear in the exercise.



5. Policy Gradient for eligibility traces (Exercise)

Step 4: Introduce ‘shadow variables’ for eligibility trace 

update of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝜃𝑘
ln[𝜋(𝑎|𝑠, 𝜃𝑘)]

Step 5: Rewrite update rule for parameters with eligibility trace 

D𝜃𝑘=h  𝑟𝑡 𝑧𝑘



Previous slide. 

This is a repetition of the exercise



5. Algo of  Policy Gradient  with eligbility traces (Exercise)

1)  Update eligibility trace for all parameters k

increase of all traces

𝑧𝑘 ← 𝑧𝑘 g decay of all traces

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝜃𝑘
ln[𝜋(𝑎|𝑠, 𝜃𝑘)]

2) update  all parameters k

D𝜃𝑘=h  𝑟𝑡 𝑧𝑘

Run trial. At each time step, observe state, action, reward

l=  gNote: I have set            as a result of the calculation



Previous slide. 

And these two updates can now be mapped to the algorithm of Sutton and Barto

that we saw a few slides before.

Conclusion: 

(i) eligibility traces are a compact form for rewriting a policy gradient algorithm. 

(ii) The derivations show that the decay factor of policy gradient must be equal to 

the discount factor of the Return, hence g=l 

For an episodic setting boundary effects would appear – but since we are here in 

the infinite-horizon continuing setting, we have nor boundary effects. Indeed, 

there are minor differences at the ‘bounderies’ that is, the beginning and end of 

each episode – but these do not matter if we think of the environment as being 

very large – potentially infinitely large because of loops. 



Summary: Eligibility traces from Policy Gradient

‘Policy Gradient Theorem’:

An algorithm with eligibility traces arises naturally

in the framework of policy gradient.

Decay rate of eligibility traces = Discount Factor g

Proof: - assumes setting of ‘continuing’ environment

(as opposed to episodic) 

- we optimize the expected average 

return from ALL states

Note: Algorithm for  ‘continuing’ setting is the better one

(better than the one for episodic setting)



Previous slide. Your notes 



Actor Critic with Eligibility Traces (continuing setting)

𝑟
𝑟

TD error 

(for g=1)

Adapted from

Sutton&Barton

2018 

Update eligibility traces

Update parameters



Notes:

1) Here Sutton and Barto have suppressed the factor g. (by setting g=1). 

They do not identify g=l. 

2) The starting point of the derivation of Sutton and Barto is to optimize the 

average reward (I optimized average return with discount factor g.

3) However, I would set g=l and add the l in the update for the TD error:

The reason is

(i) that the critic learns V-values with TD-learning and should use the same 

discounting g=l as the actor.

(ii) The baseline subtraction for an actor that uses discounted cumulative  

rewards for returns should match  the consistency condition of the  Bellman 

equation.

d  h [ 𝑟𝑡 +𝜆 𝑉 𝑆
′, 𝑤 − 𝑉(𝑆, 𝑤)]
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Previous slide. 

Application to a navigation task (see computer exercise)



6. Maze Navigation  with TD in Actor-Critic

Fremaux et al. (2013)

ra
radial basis

functions



The environment contains an obstacle (red) and a invisible reward location (green).

The overall structure of the neural network is that of an actor-critic architecture. 

Both actor and critic are driven by radial basis functions that represent the 

environment.

The actor neurons are organized in a ring. Neighboring neurons share information 

(details not necessary to know at this stage, see next slide).

Critic neurons are drawn here as a population of neurons, but this could be just as 

well a SINGLE critic neuron.

Critic neurons learn to represent the value of the current state using TD learning 

derived from the representation of V-values. The same TD signal is also used the 

update the connections to the actor neurons.



6. Ring of Actor neurons implements policy 
Note: no need to formally define a softmax function

Fremaux et al. (2013)

- Local excitation

- Long-range inhibition

- Not a formal softmax



Ring of actor neurons

Fremaux et al. (2013)

(slide not shown in class) Actor neurons (previous slide). 

A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory, 

red: inhibitory) embodies the agent’s policy (top). Each neuron represents 

one of the 360 possible directions.

B: Lateral connectivity. Each neuron codes for a distinct motion direction. 

Neurons form excitatory connections to similarly tuned neurons and

inhibitory synapses to other neurons. As a result, neighboring neurons learn 

from each other of how to represent actions.

C: Activity of actor neurons during an example trial. The activity of the 

neurons (vertical axis) is shown as a color map against time (horizontal 

axis). The lateral connectivity ensures that there is a single bump of activity 

at every moment in time. The black line shows the direction of motion (right 

axis; arrows in panel B) chosen as a result of the neural activity. 

D: Maze trajectory corresponding to the trial

shown in C. The numbered position markers match the times marked in C.

.



6. Maze Navigation  with TD in Actor-Critic 

R-max: (REINFORCE)

Policy gradient without

the critic. The goal was 

never found within 50s.

early trial

Late trial

value

map
TD: Actor-Critic

After 25 trials, the goal 

was found within 20s. 



Maze navigation learning task. 

A: The maze consists of a square enclosure, with a circular goal area 

(green) in the center. A U-shaped obstacle (red) makes the task harder by 

forcing turns on trajectories from three out of the four possible starting 

locations (crosses). 

B: Color-coded trajectories of an example TD agent during the first 75 

simulated trials. Early trials (blue) are spent exploring the maze and the 

obstacles, while later trials (green to red) exploit stereotypical behavior. 

C: Value map (color map) and policy (vector field) represented by the 

synaptic weights of the agent of panel B after 2000 simulated seconds. 

D: Goal reaching latency of agents using three slightly different learning 

rules for the actors . Latencies of N~100 simulated agents per learning rule. 

The solid lines shows the median shaded area represents the 25th to 75th 

percentiles. The R-max (REINFORCE without baseline) agent was simulated 

without a critic and enters times-out after 50 seconds.
Fremaux et al. (2013)

6. Maze Navigation  with TD in Actor-Critic with spiking neurons



6. TD in Actor-Critic for navigation task

- Learns in a few trials (assuming good representation)

- Works in continuous time (thanks to eligibility traces). 

- Works in continuous space and for continuous actions

- Critic implements value function

- TD signal calculated by critic

Fremaux et al. (2013)



Previous slide. 

Summary of findings.

An additional trick is that actor neurons interact with each other so that 

neighboring neurons share information and learn ‘similar’ policies.

This was not shown in class.

TD is better than standard policy gradient, because over many trials information 

about state-values can diffuse back from the reward location into distant parts of 

the environment. Note that the discount factor g of the value function can have a 

different value than that of the eligibility trace of the actor.

Standard policy gradient cannot learn beyond the forgetting scale of the eligibility 

trace (here 1 second). 



6. Summary

Learning in a few trials (not millions!) possible, if the sensory 

presentation is well adapted to the task. Here radial basis 

functions.

Actor-Critic works much better than REINFORCE without 

baseline.

Actor-Critic with Eligibility Traces is a powerful and stable 

algorithm and highly recommended.

Probably the best model-free algorithm.



Previous slide. Summary

And the term model-free will be explained next.
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Previous slide. 

Final point: are we looking at the right type of RL algorithm?



7. Model-based versus Model-free

What happens in RL when 

you shift the goal after 

learning?



Previous slide. 

Final point: are we looking at the right type of RL algorithm?

Imagine that the target location is shifted in the SAME environment.



What happens in RL when 

you shift the goal after 

learning?

 The value function has to 

be re-learned from scratch.

agent learns ‘arrows’, but not 

the lay-out of the environment:

Standard RL  is ‘model-free’

7. Model-based versus Model-free Reinforcement Learning



Previous slide. 

After a shift, the value function has to be relearned from scratch, because the RL 

algorithm does not build a model of the world. We just learn ‘arrows’: what is the 

next step (optimal next action), given the current state?



7. Model-based versus Model-free Reinforcement Learning

Definition:

Reinforcement learning is model-free, if the agent does 

not learn a model of the environment.

Note: of course, the learned actions are always 

implemented by some model, e.g., actor-critic. 

Nevertheless, the term model-free is standard in the field.



Previous slide. 

All standard RL algorithms that we have seen so far are ‘model free’.



7. Model-based versus Model-free Reinforcement Learning

Definition:

Reinforcement learning is model-based, if the agent does 

also learn a model of the environment.

Examples: Model of the environment

- state s1 is a neighbor of state s17.

- if I take action a5 in state s7, I will go to s8.

- The distance from s5 to s15 is 10m.

- etc



Previous slide. 

Examples of knowledge of the environment, that would be typical for model based 

algorithm 



7. Model-based versus Model-free Q-learning
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

Model-free:

the agent learns directly and only

the Q-values/V-values/policy

Model-based:

the agent learns the Q-values/policy

and also the transition probabilities

𝑃𝑠→𝑠′
𝑎1



Previous slide. 

Let us go back to our ‘tree’. If the algorithm knows the transition probabilities, or 

builds up an estimation of the transition probabilities,  then this means that it is a 

model-based algorithm.

If the algo does not contain elements that explicitly enable an estimation of 

transition probabilities, then the algorithm is model-free.

Note that knowledge of the physics of a robot (e.g., the laws of physics that 

govern the dynamics of movement) or knowledge of the rules of a game (e.g., 

allowed moves in chess) is an example of explicit knowledge of transition 

probabilities, and hence, if this knowledge is available to the algo, then the algo is 

called ‘model-based’.



7. Model-based versus Model-free Reinforcement Learning

Advantages of Model-based RL:

- the agent can readapt if the reward-scheme changes

- the agent can explore potential future paths in its ‘mind’

 agent can plan an action path

- the agent can update Q-values in the background 

 dream about action sequences

(run them in the model, not in reality)

Note: Implementations of Chess and Go are ‘model-based’, 

because the agent knows the rules of the game and can 

therefore plan an action path. It does not even have to learn 

the ‘model’.



next slide. 

Many modern applications of RL have a model-based component, because you 

need to play a smaller number of ‘real’ action sequences …

And computer power necessary for running things in the background is cheaper 

than acting ‘in real’.



Model based:

You know what state to

expect given current

state and action choice.

‘state prediction’

7. Model-based learning

Gläscher et al. 2010



State and Reward Prediction Task (previous slide)

(A)A specific experimental task for human participants was a sequential two-

choice Markov decision task in which all decision states are represented by 

fractal images. The task is to move through a binary decision tree. Each trial 

begins in the same state. Subjects can choose between a left (L) or right (R) 

button press. With a certain probability (0.7/0.3) they reach one of two 

subsequent states in which they can choose again between a left or right 

action. Finally, they reach one of three outcome states associated with different 

monetary rewards (0, 10cent, and 25cent).

(B) Importantly, to encourage model-based behavior human participants first 

watched artificially generated sequences that enabled them to learn which 

actions caused which transition, so that they could estimate the transition 

probabilities.

Gläscher et al. 2010



7. Model-based Reinforcement learning
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Model based RL allows to think about consequences of actions:

Where will I get a reward?

You just need to play the probabilities forward over the model graph: you simulate 

an experience (in your mind!) before taking the real actions.

Gläscher et al. 2010



Summary: Model-based               versus                                 Model-free

- learns model of environment

‘transition matrix’

- knows ‘rules’ of game

- planning ahead is possible

- can update Bellman equation

in ‘background’ without action

- can simulate action sequences

(without taking actions)

- does not 

- does not

- cannot plan ahead

- cannot 

- cannot

- Eligibility traces and V-values         

keep memory of past

- completely online, causal,

forward in time. 
- is not online/causal

- no need to use elgibility traces



Model-based RL is more powerful than Model-free RL.

The overhead for memory/algorithmic complexity is often acceptable so that in 

computer-applications model-based is today preferred.

Updating knowledge in the background (without playing the actions) is also 

called ‘off-line’ update.



Learning outcomes and Conclusions:

- policy gradient algorithms

 updates of parameter propto

- why subtract the mean reward/mean Return?

 reduces noise of the online stochastic gradient

- actor-critic framework (‘advantage actor critic’)

 combines TD with policy gradient

- eligibility traces as ‘candidate parameter updates’

 true online algorithm, no need to wait for end of episode

- Differences of model-based vs model-free RL

 play out consequences in your mind by running the  

state transition  model wait

[𝑅𝑒𝑡𝑢𝑟𝑛 ] 𝑑
𝑑𝜃𝑗
ln[𝜋]



Thanks!

The END

The end of today’s Lecture!

… and also the end of 7 weeks of 

‘Foundations of Reinforcement Learning’.

 We are now ready to look at specific applications


