Exercise Set 5
 Quantum Computation

Exercise 1 Square-root of the NOT gate

The aim of the present exercise is to compute, for a given one-qubit gate U, a corresponding gate V such that $V^{2}=U(c f$. Ex 2 , Hw 3) in the particular case where $U=X$ (the NOT gate). Here is first a description of the generic procedure.

First observe that since a one-qubit gate U is a 2×2 unitary matrix $\left(U U^{\dagger}=U^{\dagger} U=I\right)$, it is in particular a normal matrix satisfying $U U^{\dagger}=U^{\dagger} U$. The spectral theorem then asserts that such a U is unitarily diagonalizable, i.e., there exists Λ a 2×2 diagonal matrix (with possibly complex entries) and W another 2×2 unitary matrix, such that $U=W \Lambda W^{\dagger}$.

In order to compute Λ and W, it suffices to compute the two solutions to the eigenvalueeigenvector equation:

$$
U w^{(i)}=\lambda_{i} w^{(i)}, \quad i=0,1
$$

with the added constraint that $\left(w^{(i)}\right)^{\dagger} w^{(j)}=\delta_{i, j}$. Then $\Lambda=\operatorname{diag}\left(\lambda_{0}, \lambda_{1}\right)$ and $W=\left(w^{(0)}, w^{(1)}\right)$, i.e., $w^{(i)}$ is the i-th column of W.

Finally, consider $V=W \sqrt{\Lambda} W^{\dagger}$, where $\sqrt{\Lambda}=\operatorname{diag}\left(\sqrt{\lambda_{0}}, \sqrt{\lambda_{1}}\right)$, with square roots being taken in the complex plane \mathbb{C} (! two options for each of them !). You can check that $V^{2}=U$.
(a) Compute the 2×2 matrices Λ and W corresponding to $U=X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(b) Deduce an explicit expression for a matrix V such that $V^{2}=X$. Check now directly that $V^{2}=X$.
(c) Is V also unitary? Justify your answer.

Exercise 2 SWAP • Controlled-U •SWAP
Let $U=\left(\begin{array}{cc}U_{00} & U_{01} \\ U_{10} & U_{11}\end{array}\right)$ be a unitary matrix. The Controlled- U gate is given by the following:

(a) Compute the matrix representation of the Controlled- U gate.
(b) Draw the circuit for SWAP. Controlled- U •SWAP and compute its matrix representation.

Exercise 3 Another (small) quantum algorithm
Let U be a unitary matrix and $|u\rangle$ be an eigenvector of U, that is, $U|u\rangle=\exp (2 \pi i \varphi)|u\rangle$. Consider the following circuit:

(a) Compute the output corresponding to the input $|0\rangle \otimes|u\rangle$.
(b) Compute the probability of observing the first qubit in state $|0\rangle$, respectively $|1\rangle$, at the output of this circuit.
(c) Assume replacing U by U^{k} with k integer in the above circuit. Let $\varphi=0, \varphi_{1} \varphi_{2} \ldots \varphi_{t}$ be the binary expansion of $0<\varphi<1$. How then to choose k to determine the least significant bit φ_{t} with a single measurement?

