Exercise 1 Construction of a multi-control-U

We show the quantum state at each stage of the circuit.

$$
\text { Input : }\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes\left|c_{3}\right\rangle \otimes|0\rangle \otimes|0\rangle \otimes|t\rangle
$$

After the 1st Toffoli gate : $\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes\left|c_{3}\right\rangle \otimes\left|c_{1} \cdot c_{2}\right\rangle \otimes|0\rangle \otimes|t\rangle$
After the 2nd Toffoli gate : $\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes\left|c_{3}\right\rangle \otimes\left|c_{1} \cdot c_{2}\right\rangle \otimes\left|c_{1} \cdot c_{2} \cdot c_{3}\right\rangle \otimes|t\rangle$
After the contolled- U gate : $\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes\left|c_{3}\right\rangle \otimes\left|c_{1} \cdot c_{2}\right\rangle \otimes\left|c_{1} \cdot c_{2} \cdot c_{3}\right\rangle \otimes U^{c_{1} c_{2} c_{3}}|t\rangle$
After the 3rd Toffoli gate : $\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes\left|c_{3}\right\rangle \otimes\left|c_{1} \cdot c_{2}\right\rangle \otimes|0\rangle \otimes U^{c_{1} c_{2} c_{3}}|t\rangle$
After the 4th Toffoli gate : $\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes\left|c_{3}\right\rangle \otimes|0\rangle \otimes|0\rangle \otimes U^{c_{1} c_{2} c_{3}}|t\rangle$

Exercise 2 Controlled-controlled-U

Performing an analysis similar to the previous exercise, we observe that for an input state $\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes|t\rangle$, the output of the circuit is

$$
\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes V^{c_{1}}\left(V^{\dagger}\right)^{c_{1} \oplus c_{2}} V^{c_{2}}|t\rangle
$$

which is equal to $\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes|t\rangle$, unless $c_{1}=c_{2}=1$, in which case the output is given by

$$
\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes V^{2}|t\rangle=\left|c_{1}\right\rangle \otimes\left|c_{2}\right\rangle \otimes U|t\rangle
$$

This second construction is not universal, as it requires to compute, for each gate U, the gate V such that $V^{2}=U$.

Exercise 3 Construction of the Toffoli gate from a control-NOT
Using the first hint, we see that the circuit outputs the tensor product state $|\psi\rangle$ given by

$$
|\psi\rangle=T\left|c_{1}\right\rangle \otimes S X^{c_{1}} T^{\dagger} X^{c_{1}} T^{\dagger}\left|c_{2}\right\rangle \otimes H T X^{c_{1}} T^{\dagger} X^{c_{2}} T X^{c_{1}} T^{\dagger} X^{c_{2}} H|t\rangle .
$$

We then verify explicitly all the cases of c_{1} and c_{2}. The calculation largely uses the fact that all the quantum gates here are unitary (e.g., $T T^{\dagger}=T^{\dagger} T=I$) ; in particular, the gates X and H are involutory, i.e., $X^{2}=H^{2}=I$.

For $c_{1}=0$, we have

$$
\begin{aligned}
|\psi\rangle & =T|0\rangle \otimes S T^{\dagger} T^{\dagger}\left|c_{2}\right\rangle \otimes H T T^{\dagger} X^{c_{2}} T T^{\dagger} X^{c_{2}} H|t\rangle \\
& =|0\rangle \otimes\left|c_{2}\right\rangle \otimes H\left(T T^{\dagger}\right)\left(X^{c_{2}}\left(T T^{\dagger}\right) X^{c_{2}}\right) H|t\rangle=|0\rangle \otimes\left|c_{2}\right\rangle \otimes|t\rangle
\end{aligned}
$$

For $c_{1}=1$ and $c_{2}=0$, let us follow the second hint :

$$
X T^{\dagger} X=\left(\begin{array}{cc}
e^{-i \pi / 4} & 0 \tag{1}\\
0 & 1
\end{array}\right)=e^{-i \pi / 4} T
$$

and use this to compute

$$
\begin{aligned}
|\psi\rangle & =T|1\rangle \otimes S X T^{\dagger} X T^{\dagger}|0\rangle \otimes H T X T^{\dagger} T X T^{\dagger} H|t\rangle \\
& =e^{i \pi / 4}|1\rangle \otimes S\left(X T^{\dagger} X\right) T^{\dagger}|0\rangle \otimes H\left(T\left(X\left(T^{\dagger} T\right) X\right) T^{\dagger}\right) H|t\rangle \\
& =e^{i \pi / 4}|1\rangle \otimes e^{-i \pi / 4} S T T^{\dagger}|0\rangle \otimes|t\rangle \\
& =e^{i \pi / 4}|1\rangle \otimes e^{-i \pi / 4}|0\rangle \otimes|t\rangle=|1\rangle \otimes|0\rangle \otimes|t\rangle
\end{aligned}
$$

Finally, for $c_{1}=c_{2}=1$, we compute, using repeatedly (1):

$$
\begin{aligned}
|\psi\rangle & =T|1\rangle \otimes S X T^{\dagger} X T^{\dagger}|1\rangle \otimes H T X T^{\dagger} X T X T^{\dagger} X H|t\rangle \\
& =e^{i \pi / 4}|1\rangle \otimes e^{-i \pi / 4} S T T^{\dagger}|1\rangle \otimes e^{-i \pi / 2} H T^{4} H|t\rangle \\
& =e^{i \pi / 4}|1\rangle \otimes e^{i \pi / 4}|1\rangle \otimes e^{-i \pi / 2} X|t\rangle
\end{aligned}
$$

as

$$
T^{4}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and therefore

$$
H T^{4} H=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=X
$$

Finally, this gives

$$
|\psi\rangle=|1\rangle \otimes|1\rangle \otimes|\bar{t}\rangle
$$

as expected.

