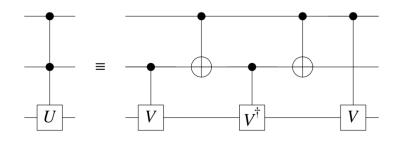

Exercise 1 Construction of a multi-control-U

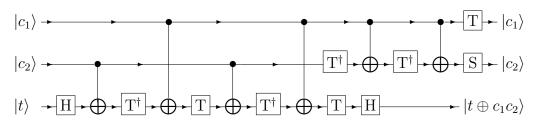
Verify that the multi-control-U :


can be realized with the Toffoli gate (control-control-NOT) and a simple control-U.

Exercise 2 Controlled-controlled-U

In the last exercise, we have seen the construction of multi-controlled-U gate with the Toffoli gates and a simple controlled-U gate. This time, we are going to see a different construction for controlled-controlled-U gate.

Let V be any quantum gate such that $V^2 = U$. Prove the following circuit identity.



Explain in what sense this second construction is "not universal", whereas the one of the previous exercise is "universal".

Verify that the control-control-NOT also called Toffoli gate :

$$\begin{array}{c} |c_1\rangle \longrightarrow |c_1\rangle \\ |c_2\rangle \longrightarrow |c_2\rangle \\ |t\rangle \longrightarrow |t \oplus c_1c_2\rangle \end{array}$$

is equivalent to the following circuit made of $CNOT,\,H,\,T$ and S

Hints: - Observe first that $(CNOT) |x\rangle \otimes |y\rangle = |x\rangle \otimes |x \oplus y\rangle$ can also be represented as $|x\rangle \otimes X^x |y\rangle$, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is the NOT gate.

- Then it is also useful to compute first independently $XT^{\dagger}X$.