Exercise 1 Matrix representation of a few gates / circuits
(a) The Hilbert space here is \mathbb{C}^{8} and its matrix representation in the computational basis $\{|000\rangle,|001\rangle,|010\rangle,|011\rangle,|010\rangle,|101\rangle,|110\rangle,|111\rangle\}$ is given by

$$
\text { CCNOT }=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(b) The matrix representation of this circuit in the computational basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ of \mathbb{C}^{4} is given by

$$
N O T_{y}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(c) The matrix representation of this circuit (in the same basis) is given by

$$
N O T_{x}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

(d) The matrix representation of this circuit (in the same basis) is given by

$$
N O T_{x} \cdot C N O T \cdot N O T_{x}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

All the above matrices are permutation matrices, and are also equal to their own inverse.

Exercise 2 Fredkin gate

(a) The AND gate can be represented as follows with only the Fredkin gate :

The OR gate is then (using $a \vee b=\operatorname{NOT}(\operatorname{NOT}(a) \wedge \operatorname{NOT}(b)))$

Another solution for both AND and OR uses a combination of CSWAP and CNOT :

For the OR gate, alternatively, we then have :

(b) The Fredkin is a controlled SWAP which swap's the last two bits if the first one is equal to 1 . Thus we find

$$
\mathrm{CSWAP}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

(c) From the matrix representation of Fredkin, we see that to obtain the matrix representation of CCNOT, we have to permute on rows $5,6,7,8$. With a bit of thought one can find that the CCNOT gate can be represented as

Another way is by noting that

$$
\begin{aligned}
& \mathrm{CNOT}|x, y\rangle=|x, x \oplus y\rangle \\
& \mathrm{CCNOT}|x, y, z\rangle=|x, y, z \oplus x y\rangle, \\
& \mathrm{CSWAP}|x, y, z\rangle=|x, y \oplus x(y \oplus z), z \oplus x(y \oplus z)\rangle .
\end{aligned}
$$

Thus an input $|x, y, z\rangle$ becomes $|x, y \oplus z, z\rangle$ after the first CNOT gate, $|x, y \oplus z \oplus x y, z \oplus x y\rangle$ after the Fredkin gate and $|x, y, z \oplus x y\rangle$ after the second CNOT gate.

Exercise 3 Mach-Zehnder interferometer

(a) A matrix U is unitary if $U U^{\dagger}=U^{\dagger} U=I$. Note that for Hadamard and $\operatorname{NOT}(\mathrm{X})$ gates, we have $H H^{\dagger}=H^{\dagger} H=I, X X^{\dagger}=X^{\dagger} X=I$. For $H X H$, we have

$$
H X H(H X H)^{\dagger}=H X H H^{\dagger} X^{\dagger} H^{\dagger}=H X X^{\dagger} H^{\dagger}=H H^{\dagger}=I
$$

With similar computations, $(H X H)^{\dagger} H X H=I$. Thus $H X H$ is unitary.
(b) We obtain successively for $|\varphi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$:

$$
\begin{aligned}
& H|\varphi\rangle=\frac{\alpha_{0}+\alpha_{1}}{\sqrt{2}}|0\rangle+\frac{\alpha_{0}-\alpha_{1}}{\sqrt{2}}|1\rangle \\
& X H|\varphi\rangle=\frac{\alpha_{0}+\alpha_{1}}{\sqrt{2}}|1\rangle+\frac{\alpha_{0}-\alpha_{1}}{\sqrt{2}}|0\rangle \\
& H X H|\varphi\rangle=\frac{\alpha_{0}+\alpha_{1}}{\sqrt{2}} \frac{|0\rangle-|1\rangle}{\sqrt{2}}+\frac{\alpha_{0}-\alpha_{1}}{\sqrt{2}} \frac{|0\rangle+|1\rangle}{\sqrt{2}}=\alpha_{0}|0\rangle-\alpha_{1}|1\rangle
\end{aligned}
$$

(c) The above gives

$$
H X H|0\rangle=|0\rangle \quad H X H|1\rangle=-|1\rangle \quad H X H|+\rangle=|-\rangle \quad H X H|-\rangle=|+\rangle
$$

Exercise 4 Production of Bell states

(a) State (i) is a Bell entangled state (see below).

State (ii) is a product state $=|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.
State (iii) is an entangled state (cannot be written as $\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right) \otimes\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right)$).
State (iv) is a product state $=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$.
State (v) is also a product state $=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.
$N B$: An easy criterion for deciding when state

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

is a product state is $\operatorname{det}\left(\begin{array}{ll}\alpha_{00} & \alpha_{01} \\ \alpha_{10} & \alpha_{11}\end{array}\right)=0$.
(b) A direct computation gives

$$
\begin{aligned}
(C N O T)(H \otimes I)|x\rangle \otimes|y\rangle & =(C N O T) H|x\rangle \otimes|y\rangle \\
& =(C N O T) \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right) \otimes|y\rangle \\
& =\frac{1}{\sqrt{2}} C N O T|0, y\rangle+\frac{(-1)^{x}}{\sqrt{2}} C N O T|1, y\rangle \\
& =\frac{1}{\sqrt{2}}|0, y\rangle+\frac{(-1)^{x}}{\sqrt{2}}|1, \bar{y}\rangle
\end{aligned}
$$

More explicitly, we enumerate all the cases :

$$
\begin{aligned}
& (C N O T)(H \otimes I)|00\rangle=(C N O T) \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|B_{00}\right\rangle \\
& (C N O T)(H \otimes I)|01\rangle=(\text { CNOT }) \frac{1}{\sqrt{2}}(|01\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\left|B_{01}\right\rangle \\
& (C N O T)(H \otimes I)|10\rangle=(\text { CNOT }) \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle)=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|B_{10}\right\rangle \\
& (C N O T)(H \otimes I)|11\rangle=(\text { CNOT }) \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\left|B_{11}\right\rangle
\end{aligned}
$$

(c) The circuit corresponding to $\left|B_{x y}\right\rangle=(C N O T)(H \otimes I)|x\rangle \otimes|y\rangle$:

(d) The circuit corresponding to $|x\rangle \otimes|y\rangle=(H \otimes I)(C N O T)\left|B_{x y}\right\rangle$:

