Exercise 1 Matrix representation of a few gates / circuits

(a) The Hilbert space here is \mathbb{C}^8 and its matrix representation in the computational basis $\{|000\rangle, |001\rangle, |010\rangle, |011\rangle, |010\rangle, |101\rangle, |110\rangle, |111\rangle\}$ is given by

$$CCNOT = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

(b) The matrix representation of this circuit in the computational basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ of \mathbb{C}^4 is given by

$$NOT_y = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(c) The matrix representation of this circuit (in the same basis) is given by

$$NOT_x = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

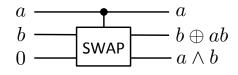
(d) The matrix representation of this circuit (in the same basis) is given by

$$NOT_x \cdot CNOT \cdot NOT_x = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

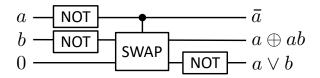
All the above matrices are permutation matrices, and are also equal to their own inverse.

Exercise 2 Fredkin gate

(a) The AND gate can be represented as follows with only the Fredkin gate :



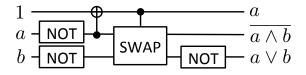
The OR gate is then (using $a \lor b = \text{NOT}(\text{NOT}(a) \land \text{NOT}(b))$)



Another solution for both AND and OR uses a combination of CSWAP and CNOT :

1	— Ф -		$ \overline{a}$
a		SWAP	$a \lor b$
b		SVVAP	$a \wedge b$

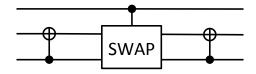
For the OR gate, alternatively, we then have :



(b) The Fredkin is a controlled SWAP which swap's the last two bits if the first one is equal to 1. Thus we find

$$CSWAP = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(c) From the matrix representation of Fredkin, we see that to obtain the matrix representation of CCNOT, we have to permute on rows 5,6,7,8. With a bit of thought one can find that the CCNOT gate can be represented as



Another way is by noting that

$$CNOT|x, y\rangle = |x, x \oplus y\rangle,$$

$$CCNOT|x, y, z\rangle = |x, y, z \oplus xy\rangle,$$

$$CSWAP|x, y, z\rangle = |x, y \oplus x(y \oplus z), z \oplus x(y \oplus z)\rangle.$$

Thus an input $|x, y, z\rangle$ becomes $|x, y \oplus z, z\rangle$ after the first CNOT gate, $|x, y \oplus z \oplus xy, z \oplus xy\rangle$ after the Fredkin gate and $|x, y, z \oplus xy\rangle$ after the second CNOT gate.

Exercise 3 Mach-Zehnder interferometer

(a) A matrix U is unitary if $UU^{\dagger} = U^{\dagger}U = I$. Note that for Hadamard and NOT(X) gates, we have $HH^{\dagger} = H^{\dagger}H = I$, $XX^{\dagger} = X^{\dagger}X = I$. For HXH, we have

$$HXH(HXH)^{\dagger} = HXHH^{\dagger}X^{\dagger}H^{\dagger} = HXX^{\dagger}H^{\dagger} = HH^{\dagger} = I$$

With similar computations, $(HXH)^{\dagger}HXH = I$. Thus HXH is unitary.

(b) We obtain successively for $|\varphi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$:

$$H |\varphi\rangle = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle$$
$$XH |\varphi\rangle = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |1\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |0\rangle$$
$$HXH |\varphi\rangle = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \alpha_0 |0\rangle - \alpha_1 |1\rangle$$

(c) The above gives

 $HXH|0\rangle = |0\rangle \qquad HXH|1\rangle = -|1\rangle \qquad HXH|+\rangle = |-\rangle \qquad HXH|-\rangle = |+\rangle$

Exercise 4 Production of Bell states

(a) State (i) is a Bell entangled state (see below). State (ii) is a product state = $|0\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$. State (iii) is an entangled state (cannot be written as $(\alpha_0 |0\rangle + \alpha_1 |1\rangle) \otimes (\beta_0 |0\rangle + \beta_1 |1\rangle)$). State (iv) is a product state = $\frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$. State (v) is also a product state = $\frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$.

NB : An easy criterion for deciding when state

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

is a product state is det $\begin{pmatrix} \alpha_{00} & \alpha_{01} \\ \alpha_{10} & \alpha_{11} \end{pmatrix} = 0.$

$$(CNOT)(H \otimes I) |x\rangle \otimes |y\rangle = (CNOT)H |x\rangle \otimes |y\rangle$$
$$= (CNOT)\frac{1}{\sqrt{2}} (|0\rangle + (-1)^{x} |1\rangle) \otimes |y\rangle$$
$$= \frac{1}{\sqrt{2}}CNOT |0, y\rangle + \frac{(-1)^{x}}{\sqrt{2}}CNOT |1, y\rangle$$
$$= \frac{1}{\sqrt{2}} |0, y\rangle + \frac{(-1)^{x}}{\sqrt{2}} |1, \overline{y}\rangle$$

More explicitly, we enumerate all the cases :

$$(CNOT)(H \otimes I) |00\rangle = (CNOT) \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = |B_{00}\rangle$$
$$(CNOT)(H \otimes I) |01\rangle = (CNOT) \frac{1}{\sqrt{2}} (|01\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) = |B_{01}\rangle$$
$$(CNOT)(H \otimes I) |10\rangle = (CNOT) \frac{1}{\sqrt{2}} (|00\rangle - |10\rangle) = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) = |B_{10}\rangle$$
$$(CNOT)(H \otimes I) |11\rangle = (CNOT) \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) = |B_{11}\rangle$$

(c) The circuit corresponding to $|B_{xy}\rangle = (CNOT)(H \otimes I)|x\rangle \otimes |y\rangle$:

$ x\rangle$ – H		
∞, _	Ţ	$ B_{max}\rangle$
$ y\rangle$ ——	$-\Phi$	D_{xy}
107		

(d) The circuit corresponding to $|x\rangle \otimes |y\rangle = (H \otimes I)(CNOT)|B_{xy}\rangle$:

$$|B_{xy}\rangle$$
 H $|x\rangle$ $|y\rangle$