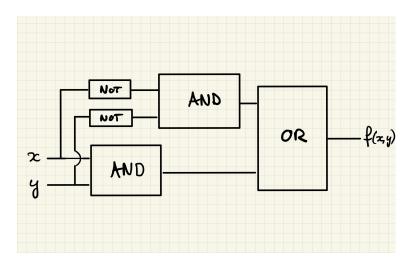
Exercise 1 Boolean functions and classical circuits

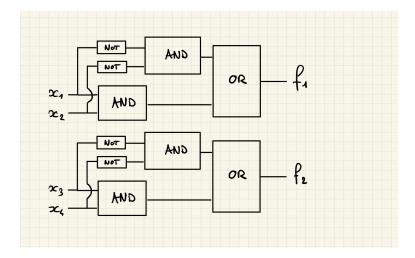
(a) Building a circuit for $f:\{0,1\}^2\to\{0,1\}$ such that f(x,y)=1 if and only if x=y can be obtained by noting that

$$f(x,y) = 1$$
 if and only if $(x = 1 \text{ and } y = 1)$ or $(x = 0 \text{ and } y = 0)$

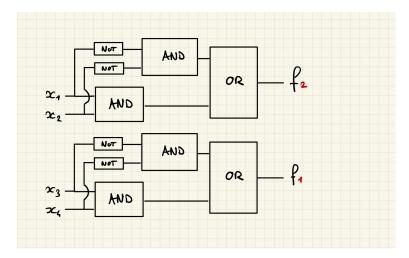
so f(x,y) = (x AND y) OR (NOT x AND NOT y) and the circuit is :



The final circuit is given by:

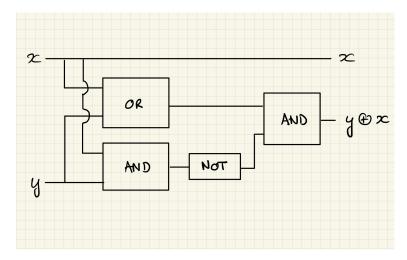


(b) In this case, it suffices to inverts the outputs of f_1 and f_2 in order to obtain what we want :

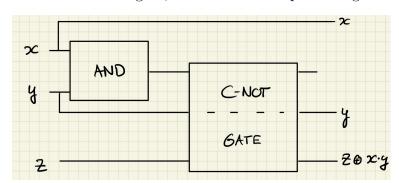


Exercise 2 NOT, C-NOT, CC-NOT gates

The C-NOT gate is obtained by noting that $x \oplus y = (x \text{ OR } y) \text{ AND NOT } (x \text{ AND } y)$:



And here is the CC-NOT or Toffoli gate, obtained via the previous gate :



Exercise 3 Dirac's notation for vectors and matrices

(a) If $|w\rangle$ is a vector and α is a scalar, then

$$(\alpha | w \rangle)^{\dagger} = \langle w | \overline{\alpha} = \overline{\alpha} \langle w |$$

(you can check this in components). Moreover, we have linearity of transposition and complex conjugation :

$$(\alpha |v\rangle + \beta |w\rangle)^{\dagger} = (\alpha |v\rangle)^{\dagger} + (\beta |w\rangle)^{\dagger}.$$

(b) Then we get

$$\langle v| = (|v\rangle)^{\dagger} = (v_1 | e_1\rangle + v_2 | e_2\rangle + \ldots + v_N | e_N\rangle)^{\dagger} = \overline{v}_1 \langle e_1| + \overline{v}_2 \langle e_2| + \ldots + \overline{v}_N \langle e_N|.$$

(c) If $\langle v| = \sum_{i=1}^{N} \overline{v}_i \langle e_i|$ and $|w\rangle = \sum_{j=1}^{N} w_j |e_j\rangle$, then

$$\langle v|w\rangle = \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{v}_i w_j \langle e_i|e_j\rangle = \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{v}_i w_j \delta_{ij} = \sum_{i=1}^{N} \overline{v}_i w_i.$$

- (d) For $\vec{v} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, we have $\|\vec{v}\|^2 = \vec{v}^{\dagger} \cdot \vec{v}$, so $\|\vec{v}\|^2 = \overline{\alpha} \alpha + \overline{\beta} \beta$. On the other hand, $\langle v|v \rangle = \overline{\alpha} \alpha + \overline{\beta} \beta$ also by (c).
- (e) Using components we have:

$$|e_{k}\rangle\langle e_{l}| = k \text{-th pos} \begin{cases} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \underbrace{\begin{pmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

(f) Thus,

$$A = \sum_{k,l} a_{kl} |e_k\rangle \langle e_l|.$$

So,

$$\langle e_i | A | e_j \rangle = \sum_{k,l} a_{kl} \langle e_i | e_k \rangle \langle e_l | e_j \rangle = \sum_{k,l} a_{kl} \, \delta_{ik} \, \delta_{lj} = a_{ij}.$$

(g) From part (e), we have

$$I = \sum_{i=1}^{N} |e_i\rangle \langle e_i|.$$

Indeed, $|e_i\rangle\langle e_i|$ is the matrix with 1 at the *i*-th row and *i*-th column and zeros elsewhere. This is called the closure relation, and it is valid for any orthonormal basis, as the following computation shows: if $\{|\varphi_i\rangle\}_{i=1...N}$ are orthonormal, there exists a unitary basis change (a "rotation") such that

$$|\varphi_i\rangle = U |e_i\rangle$$
 and therefore also $\langle \varphi_i| = \langle e_i| U^{\dagger}$.

Then from $I = \sum_{i=1}^{N} |e_i\rangle \langle e_i|$, we get : $UIU^{\dagger} = \sum_{i=1}^{N} U |e_i\rangle \langle e_i| U^{\dagger}$, so

$$I = \sum_{i=1}^{N} |\varphi_i\rangle \langle \varphi_i|.$$

(h) From $\alpha_i |\varphi_i\rangle = A |\varphi_i\rangle$, we get directly

$$\sum_{i=1}^{N} \alpha_i |\varphi_i\rangle \langle \varphi_i| = \sum_{i=1}^{N} A |\varphi_i\rangle \langle \varphi_i| = A \sum_{i=1}^{N} |\varphi_i\rangle \langle \varphi_i| = A I = A.$$

Exercise 4 Tensor Product in Dirac's notation

(a) By distributivity of the tensor product (first two properties), it follows that:

$$|v\rangle_1 \otimes |w\rangle_2 = \left(\sum_{i=1}^N v_i |e_i\rangle_1\right) \otimes \left(\sum_{j=1}^M w_j |f_j\rangle_2\right) = \sum_{i=1}^N \sum_{j=1}^M v_i w_j |e_i\rangle_1 \otimes |f_j\rangle_2.$$

(b) Take two vectors $|e_i, f_i\rangle$ and $|e_k, f_l\rangle$ of $\mathcal{H}_1 \otimes \mathcal{H}_2$. Then by definition of the inner product:

$$\langle e_k, f_l | e_i, f_j \rangle = \langle e_k | e_i \rangle \cdot \langle f_l | f_j \rangle = \delta_{ki} \cdot \delta_{lj}.$$

So this equals one if and only if (k,l) = (i,j) and zero otherwise. This means that $\{|e_i,f_j\rangle; i=1...N; j=1...M\}$ is an orthonormal basis of $\mathcal{H}_1 \bigotimes \mathcal{H}_2$. The dimension equals the number of basis vectors, so is $N \cdot M$, the product of dim \mathcal{H}_1 and dim \mathcal{H}_2 .

(c) We apply the definition

$$A \otimes B |\Psi\rangle = \sum_{i,j} \psi_{ij} A |e_i\rangle_1 \otimes B |f_j\rangle_2$$

to $|\Psi\rangle = |e_k, f_l\rangle$. So $\psi_{ij} = 1$ for (i, j) = (k, l) and 0 otherwise. This means :

$$A \otimes B | e_k, f_l \rangle = A | e_k \rangle \otimes B | f_l \rangle$$

and multiplying by $\langle e_i, f_i |$, we find :

$$\langle e_i, f_j | A \otimes B | e_k, f_l \rangle = (\langle e_i | \otimes \langle f_j |) (A | e_k \rangle \otimes B | f_l \rangle)$$

= $\langle e_i | A | e_k \rangle \langle f_i | B | f_l \rangle = a_{ik} b_{il}$.

(d) The formulas follow by translating the formulas found in (a) and (c) to the component notation.