Exercise 1 Dirac's notation for vectors and matrices
Let $\mathcal{H}=\mathbb{C}^{N}$ be a vector space of N dimensional vectors with complex components. Let

$$
\vec{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right)
$$

be a column vector. We define its "conjugate" as

$$
\vec{v}^{\dagger}=\left(\bar{v}_{1}, \ldots, \bar{v}_{N}\right)
$$

where \bar{z} stands for the complex conjugate of $z \in \mathbb{C}$. So \vec{v}^{\dagger} is obtained by transposition and complex conjugation (if the components are real this reduces to the usual transposed vector). The inner or scalar product is by definition

$$
\vec{v}^{\dagger} \cdot \vec{w}=\bar{v}_{1} w_{1}+\ldots+\bar{v}_{N} w_{N}
$$

and the norm is

$$
\|\vec{v}\|^{2}=\vec{v}^{\dagger} \cdot \vec{v}=\bar{v}_{1} v_{1}+\ldots+\bar{v}_{N} v_{N}=\left|v_{1}\right|^{2}+\ldots+\left|v_{N}\right|^{2}
$$

In Dirac's notation we write $\vec{v}=|v\rangle$ and $\vec{v}^{\dagger}=\langle v|$. Therefore the inner product becomes

$$
\langle v \mid w\rangle=\bar{v}_{1} w_{1}+\ldots+\bar{v}_{N} w_{N}
$$

The canonical orthonormal basis vectors are by definition

$$
\vec{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, \vec{e}_{N}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

In Dirac's notation the orthonormality of the basis vectors is expressed as

$$
\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

The expansion of a vector on this basis is

$$
|v\rangle=v_{1}\left|e_{1}\right\rangle+v_{2}\left|e_{2}\right\rangle+\ldots+v_{N}\left|e_{N}\right\rangle
$$

Now you will check a few easy facts of linear algebra and translate them in Dirac's notation.
(a) Check from the definitions above that if $|v\rangle=\alpha\left|v^{\prime}\right\rangle+\beta\left|v^{\prime \prime}\right\rangle$ then

$$
\langle v|=\bar{\alpha}\left\langle v^{\prime}\right|+\bar{\beta}\left\langle v^{\prime \prime}\right| .
$$

(b) In particular deduce that if $|v\rangle=v_{1}\left|e_{1}\right\rangle+v_{2}\left|e_{2}\right\rangle+\ldots+v_{N}\left|e_{N}\right\rangle$ then

$$
\langle v|=\bar{v}_{1}\left\langle e_{1}\right|+\bar{v}_{2}\left\langle e_{2}\right|+\ldots+\bar{v}_{N}\left\langle e_{N}\right| .
$$

(c) Show directly in Dirac notation that

$$
\langle v \mid w\rangle=\bar{v}_{1} w_{1}+\ldots+\bar{v}_{N} w_{N} .
$$

(d) Deduce that $\sqrt{\langle v \mid v\rangle}=\|v\|$.
(e) Consider the ket-bra expression $\left|e_{i}\right\rangle\left\langle e_{j}\right|$ for canonical basis vectors. Write this as an $N \times N$ matrix.
(f) Consider now an $N \times N$ matrix A with complex matrix elements $a_{i j} ; i=1 \ldots N$; $j=1 \ldots N$. Deduce from the above question that

$$
A=\sum_{i, j=1}^{N} a_{i j}\left|e_{i}\right\rangle\left\langle e_{j}\right|
$$

and also that

$$
a_{i j}=\left\langle e_{i}\right| A\left|e_{j}\right\rangle .
$$

(g) In particular verify that the identity matrix satisfies:

$$
I=\sum_{i=1}^{N}\left|e_{i}\right\rangle\left\langle e_{i}\right| .
$$

This is called the closure relation. Deduce that in fact this relation is valid for any orthonormal basis of vectors $\left|\varphi_{i}\right\rangle, i=1, \ldots, N$.
(h) (Spectral theorem) Let $A=A^{\dagger}$ where $A^{\dagger}=A^{T, *}$. This is called a Hermitian matrix. An important theorem of linear algebra states that: "any Hermitian matrix has N orthonormal eigenvectors with real eigenvalues (possibly degenerate)". Let $\left|\varphi_{i}\right\rangle, \alpha_{i}, i=$ $1, \ldots, N$ be the eigenvectors and eigenvalues of A, i.e.,

$$
A\left|\varphi_{i}\right\rangle=\alpha_{i}\left|\varphi_{i}\right\rangle
$$

Prove direclty in Dirac's notation that

$$
A=\sum_{i=1}^{N} \alpha_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right| .
$$

This "expansion" is often called the spectral expansion (or theorem).

Let $\mathcal{H}_{1}=\mathbb{C}^{N}$ and $\mathcal{H}_{2}=\mathbb{C}^{M}$ be N and M dimensional Hilbert spaces. The tensor product space $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ is a new Hilbert space formed by "pairs of vectors" denoted as $|v\rangle_{1} \otimes|w\rangle_{2} \equiv|v, w\rangle$ with the properties :

- $\left(\alpha|v\rangle_{1}+\beta\left|v^{\prime}\right\rangle_{1}\right) \otimes|w\rangle_{2}=\alpha|v\rangle_{1} \otimes|w\rangle_{2}+\beta\left|v^{\prime}\right\rangle_{1} \otimes|w\rangle_{2}$,
- $|v\rangle_{1} \otimes\left(\alpha|w\rangle_{2}+\beta\left|w^{\prime}\right\rangle_{2}\right)=\alpha|v\rangle_{1} \otimes|w\rangle_{2}+\beta|v\rangle_{1} \otimes\left|w^{\prime}\right\rangle_{2}$,
- $\left(|v\rangle_{1} \otimes|w\rangle_{2}\right)^{\dagger}=\left\langle\left. v\right|_{1} \otimes\left\langle\left. w\right|_{2}\right.\right.$,
- $\left\langle v, w \mid v^{\prime}, w^{\prime}\right\rangle=\left\langle v \mid v^{\prime}\right\rangle_{1}\left\langle w \mid w^{\prime}\right\rangle_{2}$.
(a) Show that for any two vectors of \mathcal{H}_{1} and \mathcal{H}_{2} expanded on two basis, $|v\rangle_{1}=\sum_{i=1}^{N} v_{i}\left|e_{i}\right\rangle_{1}$ and $|w\rangle_{2}=\sum_{j=1}^{M} w_{j}\left|f_{j}\right\rangle_{2}$, then

$$
|v\rangle_{1} \otimes|w\rangle_{2}=\sum_{i=1}^{N} \sum_{j=1}^{M} v_{i} w_{j}\left|e_{i}\right\rangle_{1} \otimes\left|f_{j}\right\rangle_{2} .
$$

(b) Show that if $\left\{\left|e_{i}\right\rangle_{1} ; i=1 \ldots N\right\}$ and $\left\{\left|f_{j}\right\rangle_{2} ; j=1 \ldots M\right\}$ are orthonormal, then $\left|e_{i}\right\rangle_{1} \otimes$ $\left|f_{j}\right\rangle_{2} \equiv\left|e_{i}, f_{j}\right\rangle$ is an orthonormal basis of $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. What is the dimension of $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$?
(c) Any vector $|\Psi\rangle$ of $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ can be expanded on the basis $\left|e_{i}\right\rangle_{1} \otimes\left|f_{j}\right\rangle_{2} \equiv\left|e_{i}, f_{j}\right\rangle, i=$ $1 \ldots N, j=1 \ldots M$,

$$
|\Psi\rangle=\sum_{i=1, j=1}^{N, M} \psi_{i j}\left|e_{i}, f_{j}\right\rangle .
$$

If A is a matrix acting on \mathcal{H}_{1} and B is a matrix acting on \mathcal{H}_{2}, the tensor product $A \otimes B$ is defined as

$$
A \otimes B|\Psi\rangle=\sum_{i, j} \psi_{i j} A\left|e_{i}\right\rangle_{1} \otimes B\left|f_{j}\right\rangle_{2}
$$

Check that the matrix elements of $A \otimes B$ in the basis $\left|e_{i}, f_{j}\right\rangle$ are :

$$
\left\langle e_{i}, f_{j}\right| A \otimes B\left|e_{k}, f_{l}\right\rangle=a_{i k} b_{j l} .
$$

(d) Let $\mathcal{H}_{1}=\mathbb{C}^{2}, \mathcal{H}_{2}=\mathbb{C}^{2}$. Take $A_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), B_{2}=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right),|v\rangle_{1}=\binom{\alpha}{\beta},|w\rangle_{2}=\binom{\gamma}{\delta}$. From the defining properties of the tensor product deduce the the following formulas :

$$
|v\rangle_{1} \otimes|w\rangle_{2}=\left(\begin{array}{c}
\alpha \gamma \\
\alpha \delta \\
\beta \gamma \\
\beta \delta
\end{array}\right), \quad \quad A_{1} \otimes B_{2}=\left(\begin{array}{cccc}
a e & a f & b e & b f \\
a g & a h & b g & b h \\
c e & c f & d e & d f \\
c g & c h & d g & d h
\end{array}\right) .
$$

These are often useful in order to do calculations in components.

