Advanced Probability and Applications

Solutions to Homework 5

Exercise 1.

a) Option 1: by the assumptions made, $\operatorname{Cov}(X_1 + X_2, X_1 - X_2) = \operatorname{Var}(X_1) + \operatorname{Cov}(X_2, X_1) - \operatorname{Cov}(X_1, X_2) - \operatorname{Var}(X_2) = \operatorname{Var}(X_1) - \operatorname{Var}(X_2) = 0$. Besides, as X_1, X_2 are independent Gaussian random variables, $X = (X_1, X_2)$ is a Gaussian random vector, so $(X_1 + X_2, X_1 - X_2)$ is also a Gaussian random vector whose components are uncorrelated, and therefore independent, by Proposition 6.8 of the course.

Option 2 is to show directly that

$$\mathbb{E}(e^{it_1(X_1+X_2)+it_2(X_1-X_2)}) = \mathbb{E}(e^{it_1(X_1+X_2)}) \mathbb{E}(e^{it_2(X_1-X_2)}) \quad \forall t_1, t_2 \in \mathbb{R}$$

as this would imply independence of $X_1 + X_2$ and $X_1 - X_2$. We check indeed that

$$\mathbb{E}(e^{it_1(X_1+X_2)+it_2(X_1-X_2)}) = \mathbb{E}(e^{i(t_1+t_2)X_1+i(t_1-t_2)X_2})$$

= $\mathbb{E}(e^{i(t_1+t_2)X_1})\mathbb{E}(e^{i(t_1-t_2)X_2}) = e^{i\mu_1(t_1+t_2)-\sigma_1^2(t_1+t_2)^2/2}e^{i\mu_2(t_1-t_2)-\sigma_2^2(t_1-t_2)^2/2}$

Because of the assumption made $(\sigma_1^2 = \sigma_2^2 = \sigma^2)$, the above expression is further equal to

$$= e^{i(\mu_1 + \mu_2)t_1 + i(\mu_1 - \mu_2)t_2 - \sigma^2(t_1^2 + t_2^2)} = e^{i(\mu_1 + \mu_2)t_1 - \sigma^2 t_1^2} e^{i(\mu_1 - \mu_2)t_2 - \sigma^2 t_2^2}$$

= $\mathbb{E}(e^{it_1(X_1 + X_2)}) \mathbb{E}(e^{it_2(X_1 - X_2)})$

which proves the claim.

b) 1. Skipped. Just note that closing our eyes, we could compute

$$\phi'_X(t) = i \mathbb{E}(X e^{itX}) \quad \text{and} \quad \phi''_X(t) = -\mathbb{E}(X^2 e^{itX}), \quad t \in \mathbb{R}$$

and deduce from there that indeed, if $\mathbb{E}(X^2) < +\infty$, then ϕ_X is twice continuously differentiable. As a by-product, we obtain the relation

$$\phi_X''(0) = -\mathbb{E}(X^2)$$

from the second formula evaluated in t = 0.

- 2. Skipped.
- 3. By the assumptions made, we obtain

$$\mathbb{E}(e^{it_1(X_1+X_2)+it_2(X_1-X_2)}) = \mathbb{E}(e^{it_1(X_1+X_2)})\mathbb{E}(e^{it_2(X_1-X_2)})$$

and also

$$\mathbb{E}(e^{it_1(X_1+X_2)+it_2(X_1-X_2)}) = \mathbb{E}(e^{i(t_1+t_2)X_1+i(t_1-t_2)X_2}) = \phi_{X_1}(t_1+t_2)\phi_{X_2}(t_1-t_2)$$

 \mathbf{SO}

 $\log \phi_{X_1}(t_1 + t_2) + \log \phi_{X_2}(t_1 - t_2) = \log \mathbb{E}(e^{it_1(X_1 + X_2)}) + \log \mathbb{E}(e^{it_2(X_1 - X_2)}) = g_1(t_1) + g_2(t_2)$ proving the claim.

4. Differentiating first the equality with respect to t_1 , we obtain

$$f_1'(t_1 + t_2) + f_2'(t_1 - t_2) = g_1'(t_1)$$

and then with respect to t_2 :

$$f_1''(t_1 + t_2) - f_2''(t_1 - t_2) = 0$$

Setting $t_1 = t_2 = \frac{t}{2}$ leads to $f_1''(t) = f_2''(0)$, and setting $t_1 = -t_2 = \frac{t}{2}$ leads to $f_2''(t) = f_1''(0)$. As these equalities are satisfied for arbitrary $t \in \mathbb{R}$, this says that the second derivatives of both f_1 and f_2 are constant functions, therefore that both f_1 and f_2 are polynomials of degree less than or equal to 2.

5. The assumption is that $\log \phi_X(t) = at^2 + bt + c$ for $t \in \mathbb{R}$. Using the hint and writing $\mu = \mathbb{E}(X)$, $\sigma^2 = \operatorname{Var}(X)$, we obtain successively:

$$e^{c} = \phi_{X}(0) = 1$$
 so $c = 0$
 $b = \phi'_{X}(0) = i\mu$ so $b = i\mu$
 $2a + b^{2} = \phi''_{X}(0) = -\mathbb{E}(X^{2}) = -(\mu^{2} + \sigma^{2})$ so $a = -\sigma^{2}/2$

Therefore, $\phi_X(t) = e^{i\mu t - \sigma^2 t^2/2}$, which is the characteristic function of a Gaussian.

6. As X_1, X_2 are independent and Gaussian, this implies that (X_1, X_2) is a Gaussian vector, i.e., that X_1, X_2 are jointly Gaussian. By the assumptions made, we also have

$$0 = \operatorname{Cov}(X_1 + X_2, X_1 - X_2) = \operatorname{Var}(X_1) + \operatorname{Cov}(X_2, X_1) - \operatorname{Cov}(X_1, X_2) - \operatorname{Var}(X_2) = \operatorname{Var}(X_1) - \operatorname{Var}(X_2)$$

so $Var(X_1) = Var(X_2)$ [note in passing that we did not use here the assumption that X_1 and X_2 are uncorrelated]. This finally completes the proof of the result stated in part b).

Exercise 2.

a) The result follows directly from the Chebyshev-Markov inequality with $\psi(x) = e^{tx}$.

b) We can write $X = \sum_{i=1}^{n} B_i$, where the B_i 's are *n* iid Bernoulli(*p*) random variables. Then, for each B_i we have

$$\mathbb{E}(e^{tB_i}) = pe^t + 1 - p$$

so that we have

$$M_X(t) = \mathbb{E}(e^{tX})$$

= $\mathbb{E}(e^{t\sum B_i})$
= $\mathbb{E}\left(\prod_i e^{tB_i}\right)$
= $\prod_i \mathbb{E}(e^{tB_i})$
= $(pe^t + 1 - p)^n$.

c) By applying the inequality in part 1 to X with a = qn, we get

$$\mathbb{P}(X \ge gn) \le \left(\frac{pe^t + 1 - p}{e^{tq}}\right)^n$$

Since y^n is an increasing function for y > 0, in order to optimize the right-hand side over t, we can substitute $z = e^t$ and optimize the function

$$\frac{pz+1-p}{z^q}$$

over z > 0. By taking the derivative and putting it equal to 0, we get

$$\frac{pz^q - qz^{q-1}(pz+1-p)}{z^{2q}} = 0 \iff pz - pqz - q(1-p) = 0 \iff z = \frac{q}{p} \cdot \frac{1-p}{1-q}.$$

Substituting $z = e^t$ in the right-hand side of the inequality leads to the result.

d) We have that

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i} B_{i}\right) = \sum_{i} \mathbb{E}(B_{i}) = np$$

so that Markov inequality for a = qn becomes

$$\mathbb{P}(X \ge qn) \le \frac{\mathbb{E}(X)}{nq} = \frac{np}{nq} = \frac{p}{q}.$$

Note that the second inequality does not depend on n. This is in general bad. In fact, when n is large we expect X to concentrate around np (its expectation). Since q > p, we therefore expect that $\mathbb{P}(X \ge qn) \to 0$ when $n \to \infty$. This is indeed what we get from the first inequality: the right-hand side goes to 0 when $n \to \infty$. However, the second inequality is just a constant for every n, and therefore it is very loose when n is large. Therefore, the inequality from part-(c) is better.

Exercise 3.

a) Using $\psi(x) = x^2$ or $\psi(x) = \sigma^2 + x^2$ in Chebyshev's inequality leads to respectively

$$\mathbb{P}(\{X \geq t\}) \leq \frac{\sigma^2}{t^2} \quad \text{and} \quad \mathbb{P}(\{X \geq t\}) \leq \frac{2\sigma^2}{\sigma^2 + t^2}$$

which is not what we want. Using the hint (with $b \ge 0$ in order to satisfy the hypotheses), we obtain

$$\mathbb{P}(\{X \ge t\}) \le \frac{\mathbb{E}((X+b)^2)}{(t+b)^2} = \frac{\sigma^2 + b^2}{(t+b)^2}$$

Optimizing over the parameter b, we find that best possible bound is obtained by setting $b^* = \frac{\sigma^2}{t}$ (which is non-negative), leading to

$$\mathbb{P}(\{X \ge t\}) \le \frac{\sigma^2}{\sigma^2 + t^2}$$

b) Using Cauchy-Schwarz's inequality with the random variables X and $Y = 1_{\{X > t\}}$, we obtain

$$\mathbb{E}(X \, \mathbb{1}_{\{X > t\}})^2 \le \mathbb{E}(X^2) \, \mathbb{P}(\{X > t\})$$

On the other hand, we have $\mathbb{E}(X \mathbf{1}_{\{X > t\}}) = \mathbb{E}(X) - \mathbb{E}(X \mathbf{1}_{\{X \le t\}}) \ge \mathbb{E}(X) - t$, therefore the result.