Solutions to Homework 5

Exercise 1. a). True; Note that for any random variable X, and a function of X, say $f(X)$ we have $\sigma(X, f(X))=\sigma(X)$. Thus, $\sigma\left(X_{1}, X_{2}\right)=\sigma\left(X_{1}, X_{2}, R, S, T\right)$ as R, S, T are functions of X_{1}, X_{2}.
b). False; For any random variable X and a surjective function of X, say $f(X)$ we have that $\sigma(f(X)) \subsetneq \sigma(X)$. Here, the absolute value function, $|\cdot|$, is not injective thus information about the sign of the random variables X_{1}, X_{2} is lost in Y_{1}, Y_{2}. Thus, $\sigma\left(Y_{1}, Y_{2}\right) \subsetneq \sigma\left(X_{1}, X_{2}\right)$.
c). True; Note that $R=X_{1}+X_{2}$ and $S=X_{1}-X_{2}$. Thus, $\sigma(R, S)=\sigma(R+S, R-S)$ as the mapping from $(R, S) \rightarrow(R+S, R-S)$ is a bijection. Further, $\sigma(R+S, R-S)=\sigma(X, Y)$.
d). False; Consider the case where $R=0$ which implies $T \leq 0$. Thus $X_{1}=-X_{2}$, and having the additional information about the absolute values of X_{1} and X_{2} (i.e., Y_{1} and Y_{2}, respectively) doesn't provide any information about the signs of the random variables X_{1} and X_{2}.
e). False; We will follow the same approach as in the part (d) to see if we can reconstruct information about X_{1} and X_{2} from Y_{1}, Y_{2}, S and T. Consider the case where $S=0$ which also implies $T \geq 0$. Thus, $X_{1}=X_{2}$. However, even after having the additional information about Y_{1} and Y_{2}, it doesn't tells us whether the values taken by X_{1} and X_{2} are positive or negative.

Exercise 2. a) Option 1: by the assumptions made, $\operatorname{Cov}\left(X_{1}+X_{2}, X_{1}-X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+$ $\operatorname{Cov}\left(X_{2}, X_{1}\right)-\operatorname{Cov}\left(X_{1}, X_{2}\right)-\operatorname{Var}\left(X_{2}\right)=\operatorname{Var}\left(X_{1}\right)-\operatorname{Var}\left(X_{2}\right)=0$. Besides, as X_{1}, X_{2} are independent Gaussian random variables, $X=\left(X_{1}, X_{2}\right)$ is a Gaussian random vector, so $\left(X_{1}+X_{2}, X_{1}-X_{2}\right)$ is also a Gaussian random vector whose components are uncorrelated, and therefore independent, by Proposition 6.8 of the course.

Option 2 is to show directly that

$$
\mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)+i t_{2}\left(X_{1}-X_{2}\right)}\right)=\mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)}\right) \mathbb{E}\left(e^{i t_{2}\left(X_{1}-X_{2}\right)}\right) \quad \forall t_{1}, t_{2} \in \mathbb{R}
$$

as this would imply independence of $X_{1}+X_{2}$ and $X_{1}-X_{2}$. We check indeed that

$$
\begin{aligned}
& \mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)+i t_{2}\left(X_{1}-X_{2}\right)}\right)=\mathbb{E}\left(e^{\left.i\left(t_{1}+t_{2}\right) X_{1}+i\left(t_{1}-t_{2}\right) X_{2}\right)}\right) \\
& =\mathbb{E}\left(e^{i\left(t_{1}+t_{2}\right) X_{1}}\right) \mathbb{E}\left(e^{i\left(t_{1}-t_{2}\right) X_{2}}\right)=e^{i \mu_{1}\left(t_{1}+t_{2}\right)-\sigma_{1}^{2}\left(t_{1}+t_{2}\right)^{2} / 2} e^{i \mu_{2}\left(t_{1}-t_{2}\right)-\sigma_{2}^{2}\left(t_{1}-t_{2}\right)^{2} / 2}
\end{aligned}
$$

Because of the assumption made ($\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$), the above expression is further equal to

$$
\begin{aligned}
& =e^{i\left(\mu_{1}+\mu_{2}\right) t_{1}+i\left(\mu_{1}-\mu_{2}\right) t_{2}-\sigma^{2}\left(t_{1}^{2}+t_{2}^{2}\right)}=e^{i\left(\mu_{1}+\mu_{2}\right) t_{1}-\sigma^{2} t_{1}^{2}} e^{i\left(\mu_{1}-\mu_{2}\right) t_{2}-\sigma^{2} t_{2}^{2}} \\
& =\mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)}\right) \mathbb{E}\left(e^{i t_{2}\left(X_{1}-X_{2}\right)}\right)
\end{aligned}
$$

which proves the claim.
b) 1. Skipped. Just note that closing our eyes, we could compute

$$
\phi_{X}^{\prime}(t)=i \mathbb{E}\left(X e^{i t X}\right) \quad \text { and } \quad \phi_{X}^{\prime \prime}(t)=-\mathbb{E}\left(X^{2} e^{i t X}\right), \quad t \in \mathbb{R}
$$

and deduce from there that indeed, if $\mathbb{E}\left(X^{2}\right)<+\infty$, then ϕ_{X} is twice continuously differentiable. As a by-product, we obtain the relation

$$
\phi_{X}^{\prime \prime}(0)=-\mathbb{E}\left(X^{2}\right)
$$

from the second formula evaluated in $t=0$.
2. Skipped.
3. By the assumptions made, we obtain

$$
\mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)+i t_{2}\left(X_{1}-X_{2}\right)}\right)=\mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)}\right) \mathbb{E}\left(e^{i t_{2}\left(X_{1}-X_{2}\right)}\right)
$$

and also

$$
\mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)+i t_{2}\left(X_{1}-X_{2}\right)}\right)=\mathbb{E}\left(e^{i\left(t_{1}+t_{2}\right) X_{1}+i\left(t_{1}-t_{2}\right) X_{2}}\right)=\phi_{X_{1}}\left(t_{1}+t_{2}\right) \phi_{X_{2}}\left(t_{1}-t_{2}\right)
$$

so

$$
\log \phi_{X_{1}}\left(t_{1}+t_{2}\right)+\log \phi_{X_{2}}\left(t_{1}-t_{2}\right)=\log \mathbb{E}\left(e^{i t_{1}\left(X_{1}+X_{2}\right)}\right)+\log \mathbb{E}\left(e^{i t_{2}\left(X_{1}-X_{2}\right)}\right)=g_{1}\left(t_{1}\right)+g_{2}\left(t_{2}\right)
$$

proving the claim.
4. Differentiating first the equality with respect to t_{1}, we obtain

$$
f_{1}^{\prime}\left(t_{1}+t_{2}\right)+f_{2}^{\prime}\left(t_{1}-t_{2}\right)=g_{1}^{\prime}\left(t_{1}\right)
$$

and then with respect to t_{2} :

$$
f_{1}^{\prime \prime}\left(t_{1}+t_{2}\right)-f_{2}^{\prime \prime}\left(t_{1}-t_{2}\right)=0
$$

Setting $t_{1}=t_{2}=\frac{t}{2}$ leads to $f_{1}^{\prime \prime}(t)=f_{2}^{\prime \prime}(0)$, and setting $t_{1}=-t_{2}=\frac{t}{2}$ leads to $f_{2}^{\prime \prime}(t)=f_{1}^{\prime \prime}(0)$. As these equalities are satisfied for arbitrary $t \in \mathbb{R}$, this says that the second derivatives of both f_{1} and f_{2} are constant functions, therefore that both f_{1} and f_{2} are polynomials of degree less than or equal to 2 .
5. The assumption is that $\log \phi_{X}(t)=a t^{2}+b t+c$ for $t \in \mathbb{R}$. Using the hint and writing $\mu=\mathbb{E}(X)$, $\sigma^{2}=\operatorname{Var}(X)$, we obtain successively:

$$
\begin{array}{cl}
e^{c}=\phi_{X}(0)=1 & \text { so } c=0 \\
b=\phi_{X}^{\prime}(0)=i \mu & \text { so } b=i \mu \\
2 a+b^{2}=\phi_{X}^{\prime \prime}(0)=-\mathbb{E}\left(X^{2}\right)=-\left(\mu^{2}+\sigma^{2}\right) & \text { so } a=-\sigma^{2} / 2
\end{array}
$$

Therefore, $\phi_{X}(t)=e^{i \mu t-\sigma^{2} t^{2} / 2}$, which is the characteristic function of a Gaussian.
6. As X_{1}, X_{2} are independent and Gaussian, this implies that $\left(X_{1}, X_{2}\right)$ is a Gaussian vector, i.e., that X_{1}, X_{2} are jointly Gaussian. By the assumptions made, we also have
$0=\operatorname{Cov}\left(X_{1}+X_{2}, X_{1}-X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Cov}\left(X_{2}, X_{1}\right)-\operatorname{Cov}\left(X_{1}, X_{2}\right)-\operatorname{Var}\left(X_{2}\right)=\operatorname{Var}\left(X_{1}\right)-\operatorname{Var}\left(X_{2}\right)$
so $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)$ [note in passing that we did not use here the assumption that X_{1} and X_{2} are uncorrelated]. This finally completes the proof of the result stated in part b).

Exercise 3. a) Using $\psi(x)=x^{2}$ or $\psi(x)=\sigma^{2}+x^{2}$ in Chebyshev's inequality leads to respectively

$$
\mathbb{P}(\{X \geq t\}) \leq \frac{\sigma^{2}}{t^{2}} \quad \text { and } \quad \mathbb{P}(\{X \geq t\}) \leq \frac{2 \sigma^{2}}{\sigma^{2}+t^{2}}
$$

which is not what we want. Using the hint (with $b \geq 0$ in order to satisfy the hypotheses), we obtain

$$
\mathbb{P}(\{X \geq t\}) \leq \frac{\mathbb{E}\left((X+b)^{2}\right)}{(t+b)^{2}}=\frac{\sigma^{2}+b^{2}}{(t+b)^{2}}
$$

Optimizing over the parameter b, we find that best possible bound is obtained by setting $b^{*}=\frac{\sigma^{2}}{t}$ (which is non-negative), leading to

$$
\mathbb{P}(\{X \geq t\}) \leq \frac{\sigma^{2}}{\sigma^{2}+t^{2}}
$$

b) Using Cauchy-Schwarz's inequality with the random variables X and $Y=1_{\{X>t\}}$, we obtain

$$
\mathbb{E}\left(X 1_{\{X>t\}}\right)^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{P}(\{X>t\})
$$

On the other hand, we have $\mathbb{E}\left(X 1_{\{X>t\}}\right)=\mathbb{E}(X)-\mathbb{E}\left(X 1_{\{X \leq t\}}\right) \geq \mathbb{E}(X)-t$, therefore the result.

