## Homework 5

Exercise 1.* Let $X_{1}, X_{2}$ be two i.i.d. $\mathcal{N}(0,1)$ random variables, defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let also

$$
Y_{1}=\left|X_{1}\right|, \quad Y_{2}=\left|X_{2}\right|, \quad R=X_{1}+X_{2}, \quad S=X_{1}-X_{2} \quad \text { and } \quad T=X_{1} \cdot X_{2}
$$

Which of the following assertions are correct? Justify your answer for full credit.
a) $\sigma\left(X_{1}, X_{2}\right)=\sigma\left(X_{1}, X_{2}, R, S, T\right)$
b) $\sigma\left(X_{1}, X_{2}\right)=\sigma\left(Y_{1}, Y_{2}\right)$
c) $\sigma\left(X_{1}, X_{2}\right)=\sigma(R, S)$
d) $\sigma\left(X_{1}, X_{2}\right)=\sigma\left(Y_{1}, Y_{2}, R, T\right)$
e) $\sigma\left(X_{1}, X_{2}\right)=\sigma\left(Y_{1}, Y_{2}, S, T\right)$

Exercise 2. a) Let $X_{1}, X_{2}$ be two independent Gaussian random variables such that $\operatorname{Var}\left(X_{1}\right)=$ $\operatorname{Var}\left(X_{2}\right)$. Show, using characteristic functions or a result from the course, that $X_{1}+X_{2}$ and $X_{1}-X_{2}$ are also independent Gaussian random variables.
b) Let $X_{1}, X_{2}$ be two independent square-integrable random variables such that $X_{1}+X_{2}, X_{1}-X_{2}$ are also independent random variables. Show that $X_{1}, X_{2}$ are jointly Gaussian random variables such that $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)$.

Note. Part b), also known as Darmois-Skitovic's theorem, is considerably more challenging than part a)! Here are the steps to follow in order to prove the result (but please skip the first two).

Step 1*. (needs the dominated convergence theorem, which is outside of the scope of this course) If $X$ is a square-integrable random variable, then $\phi_{X}$ is twice continuously differentiable.
Step 2*. (quite technical) Under the assumptions made, $\phi_{X_{1}}$ and $\phi_{X_{2}}$ have no zeros (so $\log \phi_{X_{1}}$ and $\log \phi_{X_{2}}$ are also twice continuously differentiable, according to the previous step).
Step 3. Let $f_{1}=\log \phi_{X_{1}}$ and $f_{2}=\log \phi_{X_{2}}$. Show that there exist functions $g_{1}, g_{2}$ satisfying

$$
f_{1}\left(t_{1}+t_{2}\right)+f_{2}\left(t_{1}-t_{2}\right)=g_{1}\left(t_{1}\right)+g_{2}\left(t_{2}\right) \quad \forall t_{1}, t_{2} \in \mathbb{R}
$$

Step 4. If $f_{1}, f_{2}$ are twice continuously differentiable and there exist functions $g_{1}, g_{2}$ satisfying

$$
f_{1}\left(t_{1}+t_{2}\right)+f_{2}\left(t_{1}-t_{2}\right)=g_{1}\left(t_{1}\right)+g_{2}\left(t_{2}\right) \quad \forall t_{1}, t_{2} \in \mathbb{R}
$$

then $f_{1}, f_{2}$ are polynomials of degree less than or equal to 2 . Hint: differentiate!
Step 5. If $X$ is square-integrable and $\log \phi_{X}$ is a polynomial of degree less than or equal to 2 , then $X$ is a Gaussian random variable.

Hint. If $X$ is square-integrable, then you can take for granted that $\phi_{X}(0)=1, \phi_{X}^{\prime}(0)=i \mathbb{E}(X)$ and $\phi_{X}^{\prime \prime}(0)=-\mathbb{E}\left(X^{2}\right)$.
Step 6. From the course, deduce that $X_{1}, X_{2}$ are jointly Gaussian and that $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)$.

Exercise 3. a) Let $X$ be a square-integrable random variable such that $\mathbb{E}(X)=0$ and $\operatorname{Var}(X)=\sigma^{2}$. Show that

$$
\mathbb{P}(\{X \geq t\}) \leq \frac{\sigma^{2}}{\sigma^{2}+t^{2}} \quad \text { for } t>0
$$

Hint: You may try various versions of Chebyshev's inequality here, but not all of them work. A possibility is to use the function $\psi(x)=(x+b)^{2}$, where $b$ is a free parameter to optimize (but watch out that only some values of $b \in \mathbb{R}$ lead to a function $\psi$ that satisfies the required hypotheses).
b) Let $X$ be a square-integrable random variable such that $\mathbb{E}(X)>0$. Show that

$$
\mathbb{P}(\{X>t\}) \geq \frac{(\mathbb{E}(X)-t)^{2}}{\mathbb{E}\left(X^{2}\right)} \quad \forall 0 \leq t \leq \mathbb{E}(X)
$$

Hint: Use first Cauchy-Schwarz' inequality with the random variables $X$ and $Y=1_{\{X>t\}}$.

