
Artificial Evolution

Prof. Dario Floreano

Laboratory Exercises

Writing a RoboGen Scenario

To define a fitness function, you will implement a scenario class in ECMAScript (JavaScript). To define

a scenario, the one thing that you are required to do is to define a function getFitness. For example,

this would be a valid scenario:

{
getFitness: function() {

return 0;
},

}

However, it will not be very useful, since every robot would get fitness 0.

Most likely you will want the fitness function to be based on what happens during the simulation.

The important thing to understand is that, since the getFitness function will be called after the

simulation(s) have finished, you will no longer have access to any information from the simulator at

that time. So, to use information from the simulator, you will need to implement additional methods.

The methods you can optionally implement are:

setupSimulation - called at the very start of each simulation.

afterSimulationStep - called after every single step of a simulation.

endSimulation - called at the end of each simulation.

Each of these functions can do some internal processing, and should return true if there are no

errors, or false if there is a fatal error and the program should exit. For example, say we want the

fitness to be the distance that the robot's core component moved (in two dimensions) during a single

simulation. Our script file would then contain the following:

{

setupSimulation: function() {

// record the starting position

this.startPos = this.getRobot().getCoreComponent().getRootPosition();

return true;

},

endSimulation: function() {

// find the distance between the starting position and ending position

var currentPos = this.getRobot().getCoreComponent().getRootPosition();

var xDiff = (currentPos.x - this.startPos.x);

var yDiff = (currentPos.y - this.startPos.y);

this.fitness = Math.sqrt(Math.pow(xDiff,2) + Math.pow(yDiff,2));

return true;

},

getFitness: function() {

return this.fitness;

},

}

In practice, you will want a scenario that can accommodate multiple simulations per fitness

evaluation. This may help you evolve robots that are robust to factors such as the starting

configurations and/or noise. You will therefore need to aggregate information from each simulation

and then use this information to arrive at the final fitness value. The following shows how to

implement our example "Racing Scenario" where the fitness in each evaluation is the distance from

the starting position to the closest part of the robot at the end of the simulation (to prevent getting a

high fitness score by falling forward). The final fitness is the minimum across the evaluations (a robot

is only as good as it is in its worst evaluation).

{

// here we define a variable for record keeping

distances : [],

// function called at the beginning of each simulation

setupSimulation: function() {

this.startPos = this.getRobot().getCoreComponent().getRootPosition();

return true;

},

// function called at the end of each simulation

endSimulation: function() {

// Compute robot ending position from its closest part to the start pos

var minDistance = Number.MAX_VALUE;

bodyParts = this.getRobot().getBodyParts();

console.log(bodyParts.length + " body parts");

for (var i = 0; i < bodyParts.length; i++) {

var xDiff = (bodyParts[i].getRootPosition().x - this.startPos.x);

var yDiff = (bodyParts[i].getRootPosition().y - this.startPos.y);

var dist = Math.sqrt(Math.pow(xDiff,2) + Math.pow(yDiff,2));

if (dist < minDistance) {

minDistance = dist;

}

}

this.distances.push(minDistance);

return true;

},

// here we return minimum distance travelled across evaluations

getFitness: function() {

fitness = this.distances[0];

for (var i=1; i<this.distances.length; i++) {

if (this.distances[i] < fitness)

fitness = this.distances[i];

}

return fitness;

},

}

