
Lab 3

Analysis of Weight Gain Data

library("HSAUR3")

## Loading required package: tools
data("weightgain", package = "HSAUR3")

tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean)

## High Low
## Beef 100.0 79.2
## Cereal 85.9 83.9
tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd)

## High Low
## Beef 15.13642 13.88684
## Cereal 15.02184 15.70881

We see that there are only slight variations in values across different levels, so we may assume that there are
no major violations of homoscedasticity.
plot.design(weightgain)
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Clearly there are differences in the means of weight gain between the two levels of both covariates.
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wg.aov <- aov(weightgain ~ source*type, data=weightgain)
summary(wg.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## source 1 221 220.9 0.988 0.3269
## type 1 1300 1299.6 5.812 0.0211 *
## source:type 1 884 883.6 3.952 0.0545 .
## Residuals 36 8049 223.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the formula for the regression model under consideration here is:

weightgain = β0 + β1 · sourceCereal + β2 · typeLow + β3 · sourceCereal · typeLow + error

where the covariates are indicator variables.
coef(wg.aov)

## (Intercept) sourceCereal typeLow
## 100.0 -14.1 -20.8
## sourceCereal:typeLow
## 18.8

Hence, β0 = 100, β1 = −14.1, β2 = −20.8, β3 = 18.8.

As for the interpretation, it makes sense to consider separate “cells” (by setting one covariate to have value 1
or 0). For instance, suppose first that sourceCereal= 0.

Then we end up with the equation

weightgain = β0 + β2 · typeLow + error,

whereas, if sourceCereal= 1, then

weightgain = (β0 + β1) + (β2 + β3) · typeLow + error

We see that if sourceCereal= 1, then the intercept becomes β0 + β1 = 85.9, and the coefficient (slope)
β2 + β3 = −2, compared to β0 = 100, and β2 = −20.8, if sourceCereal= 0. Since the covariates are indicator
random variables, and the setting is balanced, their mean is 0.5, which suggests an overall increase in the
mean in case sourceCereal= 0.

Similarly, if typeLow= 0, the formula becomes

weightgain = β0 + β1 · sourceCereal + error,

whereas if typeLow= 1, then

weightgain = (β0 + β2) + (β1 + β3) · sourceCereal + error

Looking at the level function, we are able to see that, if typeLow=1, the interecept becomes β0 + β2 = 79.2,
and the coefficient (slope) β1 + β3 = 4.7, compared to β0 = 100 and β1 = −14.1 otherwise, which suggests
the decrease in the mean for typeLow= 1.

Regarding, the slope coefficients, note that if sourceCereal= 0, then the a unit increase in typeLow (that is if
typelow=1) leads to a decrease of -20.8 in weightgain. On the other hand, if sourceCereal= 1, then a unit
increase in typeLow only leads to a moderate decrease of −2. This change in the slopws also be seen in the
plot below, where the change for Beef is larger than for Cereal.
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interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain)
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Since the lines are not parallel (different slopes), this shows the presence of interaction, which agrees with our
discussion in the paragraph above.

If the interactions are significant, and the main effects are not significant, can we then drop the main effect
covariates from the regression?

The answer is that you can drop the main effects, but then you would have to be careful because this
completely changes the interpretation of the coefficients. Actually, droping one the main effects means that
the interaction terms become effects themselves. In particular, the interaction is no longer a product of
any of the effects in the model under consideration. For instance, if you were to drop, say source, from the
regression, then source·type is no longer an interaction because source is not part of your main effects. In
this case source·type would become an effect itself.
layout(matrix(1:4,ncol=2))
par(pty="s",mar=c(3,1,2,1)+0.1)
plot(wg.aov)
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We see that there is are no major violations from the model assumptions. The mean and variance of the
residuals does not seem to be varying wrt. to the fitted values, so we may say that the homoscedasticity
assumption holds. Judging by the upper corner at the right of the QQ plot the residuals seem to be slightly
subgaussian, but given the small sample size we may assume that the normality assumption holds.

Difference ANOVA vs Regression?

There is not really a difference between anova and regression - they are both instances of the General Linear
Model. In both cases, the outcome (response) variable is continuous. In regession, the explanatory variables
are continuous while in anova the explantory variables are categorical. You can also have a mix of variable
types, in which you would just call the model a General Linear Model (and according to specific type, could
be ancova, or analysis of covariance).

Analysis of Foster Feeding Data

We use the following code line to obtain the number of measurements per cell and then conclude that the
design is not balanced.
tapply(foster$weight, list(foster$litgen, foster$motgen), length)

## A B I J
## A 5 3 4 5
## B 4 5 4 2
## I 3 3 5 3
## J 4 3 3 5

Obviously, 2 6= 3 6= 4 6= 5, hence unbalanced design.

In a balanced (orthogonal) design, the variables are independent. Thus, no variable gives information about
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the others and the order of entry into the model is irrelevant.

On the other hand, in an unbalanced (non-orthogonal) design, the sum of squares cannot be readily partitioned
as in the Pythagorean theorem, leading the the issue of order of entry into the model.

And for more information than you really want, here is a response from the R FAQ: 7.18 Why does the
output from anova() depend on the order of factors in the model?

In a model such as ~A+B+A:B, R will report the difference in sums of squares between the models ~1, ~A,
~A+B and ~A+B+A:B. If the model were ~B+A+A:B, R would report differences between ~1, ~B, ~A+B,
and ~A+B+A:B . In the first case the sum of squares for A is comparing ~1 and ~A, in the second case it is
comparing ~B and ~B+A. In a non-orthogonal design (i.e., most unbalanced designs) these comparisons are
(conceptually and numerically) different.

Some packages report instead the sums of squares based on comparing the full model to the models with
each factor removed one at a time (the famous ‘Type III sums of squares’ from SAS, for example). These do
not depend on the order of factors in the model. The question of which set of sums of squares is the Right
Thing provokes low-level holy wars on R-help from time to time.

There is no need to be agitated about the particular sums of squares that R reports. You can compute your
favorite sums of squares quite easily. Any two models can be compared with anova(model1, model2), and
drop1(model1) will show the sums of squares resulting from dropping single terms.

Now, fit the following model and obtain the summary:
model.1 <- aov(weight ~ litgen * motgen, data = foster)
summary(model.1)

## Df Sum Sq Mean Sq F value Pr(>F)
## litgen 3 60.2 20.05 0.370 0.77522
## motgen 3 775.1 258.36 4.763 0.00574 **
## litgen:motgen 9 824.1 91.56 1.688 0.12005
## Residuals 45 2440.8 54.24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, variable “motgen” is significant at the level 0.01 (and hence at the level 0.05). This means there are at
least two levels of variable motgen which admit significantly different means. Below, we first obtain the labels
of the levels (of variable motgen) and then investigate the levels which are significantly different:
levels(foster$motgen)

## [1] "A" "B" "I" "J"

Consequently, variable motgen has four levels with labels: A, B, I ,J.

Let’s move on and obtain Tukey Honest Significant Differences (TukeyHSD)
foster.hsd <- TukeyHSD(model.1, "motgen")
foster.hsd

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = weight ~ litgen * motgen, data = foster)
##
## $motgen
## diff lwr upr p adj
## B-A 3.330369 -3.859729 10.5204672 0.6078581
## I-A -1.895574 -8.841869 5.0507207 0.8853702
## J-A -6.566168 -13.627285 0.4949498 0.0767540
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## I-B -5.225943 -12.416041 1.9641552 0.2266493
## J-B -9.896537 -17.197624 -2.5954489 0.0040509
## J-I -4.670593 -11.731711 2.3905240 0.3035490

So, levels “J” and “B” are significantly different, p− value = 0.0040509 (< 0.05).

Following is a visualisation of the result above:
plot(foster.hsd)

−15 −10 −5 0 5 10

J−
I

J−
B

I−
B

J−
A

I−
A

B
−

A

95% family−wise confidence level

Differences in mean levels of motgen

Point 0 is not included in the 95% confidence interval corresponding to the difference mean “J” and “B”.

Remark: Notice that the conclusion above only concerns variable “motgen”. We first concluded its significancy
in model.1 and then we investigated the levels of motgen which are significantly different.
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