
Last Name First Name..................

Artificial Neural Networks: Exam

5th of July 2021

• Keep your bag next to your chair, but do not open it during the exam.

• Write your name in legible letters on top of this page.

• The exam lasts 180 min.

• Write all your answers in a legible way on the exam (no extra sheets).

• No documentation is allowed (no textbook, no slides), except one page A5

of handwritten notes, doublesided.

• No calculator is allowed.

• Have your student card displayed in front of you on your desk.

• Check that your exam has 13 pages; page 14 is an empty backcover

Evaluation:

1. / 10 pts (Section 1, Quiz-questions)

2. / 5 pts (Section 2, Bellman equation)

3. / 14 pts (Section 3, Gradient Descent)

4. / 6 pts (Section 4, Policy Gradient)

————————–

Total: / 35 pts

1

This page remains empty. You can use it as free space for your calcu-

lations, do not use to write down answers.

2

Definitions and notations

RL stands for Reinforcement Learning.

The symbol η is reserved for the learning rate.

Bold face symbols refer to vectors, normal face to a single component or a single

input/output. Unless noted otherwise, the input is N -dimensional: xµ ∈ RN

In the context of reinforcement learning, the symbol a refers to an action; the

symbols r and R to a reward; the symbol s to a discrete state; and the symbol γ

to a discount rate. If the state space is continuous then states are also written as

x.

How to give answers

The first section contains 9 Yes-No question. For each question, you have three

possibilities: Tick yes, or no, or nothing. Every correct answer gives one

positive point, every wrong answer one negative point, and no answer no point. If

the final count (with this procedure) across all questions is below zero, we give zero

points. With this procedure random guesses are subtracted and if all N questions

are correctly answered you receive N points.

The remaining sections involve calculations. Please write the answers in the

space provided for that purpose.

We also provide some free space for calculations. We will not look at these parts

for grading. You can ask for extra scratch paper. We will not look at the scratch

paper.

3

1 10 Yes-No questions (10 points; explanation on the previous page)

1. The complexity of the backprop algorithm in a multi-layer deep network scales linearly

with the number of synaptic weights

[] Yes or No []

2. A cross-entropy error function for multi-class output together with one-hot coding of the

target (unit k codes for class k) and softmax function for the output guarantees that the

value of the output unit k is equal to the true posterior probability P (Ck|x), once the

optimization algorithm has converged to the minimum.

[] Yes or No []

3. For a simple network with a single output (with strictly monotone nonlinearity) and

no hidden layer, the stochastic gradient descent update rule on an error function E =∑
µ[tµ− ŷµ]2 can be written as ∆w(µ) = β(ŷµ)[tµ− ŷµ]xµ, where β(ŷµ) is only a function

of ŷµ and does not depend on tµ.

[] Yes or No []

4. For a simple Perceptron with input x in N dimensions, the following holds: if in the N

dimensional picture the threshold is changed, then this induces a rotation of the hyperplane

in the N + 1 dimensional picture.

[] Yes or No []

5. In state s we have three action choices with Q-values Q(s, a1) = 2, Q(s, a2) = 4, Q(s, a3) =

5 and use the softmax policy. If I double all Q-values (i.e., Q(s, a1) = 4, Q(s, a2) = 8,

Q(s, a3) = 10), then the relative preference for action a3 increases.

[] Yes or No []

6. You use an error function E that depends on parameters w, minimize the error on the

training set, and evaluate on the validation set which yields a value E∗. You then switch

to a cost function C(w) = E(w)+λ|w| where the absolute value signs denote the L2-norm

and λ > 0, mininize the cost on the training set, and evaluate on the validation set which

yields C∗. Since λ is positive and absolute values are positive, C∗ is always larger than

E∗.

[] Yes or No []

4

The next four yes-no questions all have the same conditions: In an RL problem,

the agent moves in a directed state-transition graph, i.e., during an episode (one

complete path) a state is touched at most once. The agent starts in state s1, chooses

between two actions in each state, and arrives after 10 actions in a terminal state

sterm. In the first episode the agent receives after the fifth action a reward of r = +1.

This is the only reward on the path of the first episode; all other rewards are zero.

1. The agent uses 2-step SARSA with a discount factor of γ = 0.8 and all Q-values are

initialzed at Q(s, a) = +2. Then exactly two Q-values will have increased after the first

episode.

[] Yes or No []

2. Same conditions as before: The agent uses 2-step SARSA with a discount factor of γ = 0.8

and all Q-values are initialzed at Q(s, a) = +2. Then at least one Q-value will have

decreased after the first episode.

[] Yes or No []

3. The agent uses an (advantage) actor-critic with eligibility traces for both actor and critic.

Eligibility traces decay with λ = 0.6. Reward estimators are described by V-values ini-

tialized at V (s) = +2 for all states including the terminal state. The discount factor for

V-values is one. Then at least three V-values will have increased after the first episode.

[] Yes or No []

4. The agent uses an (advantage) actor-critic with eligibility traces for both actor and critic.

Eligibility traces decay with λ = 0.6. Reward estimators are described by V-values ini-

tialized at V (s) = +2 for all states including the terminal state. The discount factor for

V-values is one. Then at least three V-values will have decreased after the first episode.

[] Yes or No []

number of correct answers:/10

number of wrong answers:/10 number of points:/ 10

5

This page remains empty. You can use it as free space for your calcu-

lations, do not use to write down answers.

6

2 Bellman equation for a new algorithm (5 points)

In class we have seen that algorithms such as SARSA can be linked to a Bellman

equation. Now your friend Thomas proposes a new variant of SARSA (which he

calls ’1-2-3-SARSA’) with the update rule for pseudo-Q-values Q̃.

∆Q̃(sn, an) = η[1 · r(sn, an) + 2 · Q̃(sn+1, an+1)− 3 · Q̃(sn, an)] (1)

where sn denotes the state encountered in the nth step of the episode, an the

action taken in the nth step of the episode, and r(sn, an) the reward received after

this state-action pair and η < 0.01 is a parameter.

(a) What is the interpretation of Q̃? Is it qualitatively different from standard

Q-values or is there are one-to-one relation between Q̃ and the Q-values found by

a normal SARSA algorithm?

..

..

..

number of points:/ 2

(b) Suppose that this rule has converged in expectation. What is the resulting

Bellman equation for Q̃? Give the full Bellman equation for Q̃ assuming finite sets

of states and actions and a probabilistic transition matrix.

..

..

..

number of points:/ 3

7

3 BackProp for event-based neural networks (14 points)

Our data base contains entries (xµ,yµ) where xµ is a J-dimensional input vector

with elements 0 ≤ xµj ≤ 1 (where 1 ≤ j ≤ J) and a K-dimensional target output

with elements 0 ≤ yµk ≤ 1 (where 1 ≤ k ≤ K). We approximate the relation

between input and output using a fully connected network with three hidden layers,

each of size N . The index of the entries runs from µ = 1 to µ = 10000.

Input, output, and hidden layers use neurons that code information in the timing

of ’events’ (sometimes called ’spikes’). Inputs during presentation of pattern µ are

encoded in event times (spike times) t0j = xµj where the upper index zero indicates

layer zero (= input layer) and 1 ≤ j ≤ J (see Figure on next page). Outputs are

encoded in the event times t4k of neurons in the output layer with layer index l = 4

and 1 ≤ k ≤ K.

The aim is the minimize the quadratic loss function for each pattern µ

E(µ) =
1

2

K∑
k=1

[t4k − y
µ
k]2 (2)

where t4k is the event timing of unit k in the output layer in response to pattern µ

and yµk is the target value for this unit and pattern.

The event-based model consists of layers 0 ≤ l ≤ 4 of spiking neurons. The

variable vlp of neuron p in layer l ≥ 1 evolves as a function of time as

vlp(t) = αt+
∑
i

wlpi · (t− tl−1i) ·H(t− tl−1i) (3)

where t ≥ 0 is time and H denotes the Heaviside step function with H(x) = 1

for x > 1 and zero otherwise. Here α is the slope of increase in the absence of

inputs. The slope changes after each input event. Note that only events that occur

BEFORE t can contribute to the slope at time t (see Figure).

The process is stopped after an observation time tobs and only events that occur

before tobs are taken into account. The event time tlp of neuron p in layer l follows

from the threshold condition vlp = ϑ and is given implicitly by

tlp =
ϑ+

∑
iw

l
pit

l−1
i H(tlp − tl−1i)

α +
∑

iw
l
piH(tlp − tl−1i)

H(tobs − tlp) + (1 + ε)tobsH(t1p − tobs) (4)

Note that events that would occur after the observation time are excluded because

of the Heaviside function H(tobs − tlp).

8

The derivative of the loss for pattern µ with respect to a weight w1
ij in the first

layer is

∂E

∂w1
ij

= −
K∑
k=1

N∑
n=1

N∑
m=1

[t4k − y
µ
k] (5)

· w
4
kn

v′(t4k)
· w

3
nm

v′(t3n)
· w2

mi

v′(t2m)
·
t1i − t0j
v′(t1i)

·H(tobs − t4k)H(tobs − t3n)H(tobs − t2m)H(tobs − t1i)
·H(t4k − t3n)H(t3n − t2m)H(t2m − t1i)H(t1i − t0j) (6)

Here v′(tlp) = α +
∑

iw
l
pi · H(tlp − tl−1i) denotes the derivative of the variable vlp

(rising slope) at the moment of threshold crossing. We assume that weights are

always such that the slope is positive at all moments (and in particular at the

moment of threshold crossing).

Your task is to derive an efficient∗ backprop rule to update all the

weights w1
ij in the first layer. To do so, indicate all varieables that you need

to store during the forward and backward pass and how they are used in the weight

update step.

∗ efficient means optimal scaling when we change the number N of neurons in the

hidden layers.

Summarize your results in pseudo-code using the layout on the next page:

SCHEMATIC IMAGE: Left: A network with three hidden layers. In-

dices of selected weights and neurons are given. RIGHT: An event-

based unit. Events of layer l-1 change the slope. The event in layer l is

defined by the moment of threshold crossing.

spike emission=

event in layer l

spike arrival =

events in layer l-1

𝑉𝑖 𝑡 = 𝛼𝑡 + 𝑗𝑤𝑖𝑗 𝐻(𝑡 − 𝑡𝑗
𝑙−1) (𝑡 − 𝑡𝑗

𝑙−1)

𝑡𝑗
𝑙−1

𝑡𝑖
𝑙

t

𝑡𝑜𝑏𝑠𝑉𝑖

k

…

…

…

…

k

n

m

i

j

K

N

N

N

J
𝑤𝑖𝑗
1

𝑤𝑚𝑖
2

𝑤𝑛𝑚
3

𝑤𝑘𝑛
4

input

output

9

Pseudocode (for one pattern)

(0) Initialization

Parameters wlij are initialized

Parameters α > 0, ϑ > 0 are initialized at small values [ε, ε].

Pattern xµ is applied at the input (using the event-based code explained above)

(a) Forward pass

Evaluate and store the following variables in the following order

..

..

..

..

..

..

..

number of points:/ 2

(b) Backward pass

Evaluate and store the following variables in the following order

..

..

..

..

..

..

..

..

number of points:/ 4

(c) Update of weights

∆w1
ij = ..

number of points:/ 4

10

(d) Suppose that the slope parameter α is also a free parameter. Update the slope

α1
i of neuron i in the first layer using gradient descent

∆α1
i = ..

number of points:/ 4

(d) The network has three hidden layers with N neurons in each hidden layer. How

does your algorithm scale if you increase the number N of neurons per hidden layer

from N = 10 to N = 200? Justify your answer by referring to your results in (a)

- (c) and exploit that the number of neurons in the input and the output layer do

not change.

ANSWER:

If I increase the number of hidden neurons by a factor 20, the algorithm is expected

to take longer

by a factor of (approximately)

because

..

..

number of points:/ 2

11

4 Policy gradient (8 points)

An agent moves in a 2-dimensional discrete environment. In each episode, it

starts (with probability P (xn)) from one of 9900 possible initial states xn with

1 ≤ n ≤ 99000. In each initial state it has two possible actions ak with k ∈ {1, 2}.
The action choices are implemented by an artificial neural network with an ’action-

related’ neuron which emits one of two output values a1, either 0 or 1. The

probability that this neuron emits a value a1 = 1 is

π(a1 = 1|x; w) =
[
∑2500

k=1 wkyk]
4

1 + [
∑2500

k=1 wkyk]
4

(7)

where w is the vector of weights wk and yk = f(x− ck) ≥ 0. Here x ∈ IR2 is the

input signal that contains the state information and ck is the center of one of 2500

localized but overlapping basis functions f that fully cover the two-dimensional

input space. The centers lie on a 50x50 grid and initial states are either at the

center of the grid or in between two grid points.

If a1 = +1 then the agent chooses action 1 which makes him move North with

probability 0.5, or East or West with probability 0.25 each. If a1 = +0 then the

agent chooses action a2 with probability 1 − π(a1 = 1|x; w). The second action

choice makes him moves by South with probability 0.5, or East or West with

probability 0.25 each. For an action ai in state xn, the agent receives a reward

R(ai,xn) and then the agent is reinitialized in a new state. Each movement is by

half a grid length.

(a) Calculate the gradient of the mean reward

〈R〉 =
∑99000

n=1

∑2
i=1R(ai,xn)π(ai|xn;W)P (xn) with respect to the weight wi7.

d
dwi7
〈R〉 =

..

..

..

..

..

number of points:/ 3

12

(b) Use the result from (a) to write down a ’batch policy gradient’ rule for an

arbitrary weight wij.

∆wij =

..

number of points:/ 1

(c) Go from the batch rule for weight wij in (b) to an ’online rule’ that would allow

the agent to update the weight after each action.

∆wij =

..

number of points:/ 2

The rest of this page is empty. Free space for your calculations, do not

use to write down answers.

13

