
Article

The International Journal of

Robotics Research

2021, Vol. 40(4-5) 698–721

� The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364920987859

journals.sagepub.com/home/ijr

How to train your robot with deep
reinforcement learning: lessons we have
learned

Julian Ibarz1 , Jie Tan1, Chelsea Finn1,2, Mrinal Kalakrishnan3 ,

Peter Pastor3 and Sergey Levine1,4

Abstract

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors

from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video

games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has

also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-

world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn:

as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges,

some of which are easier to address than others, and some of which are often not considered in RL research that focuses

only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL.

Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been

addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the

real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both

for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real

world.

Keywords

Robotics, reinforcement learning, deep learning

1. Introduction

Robotic learning lies at the intersection of machine learn-

ing and robotics. From the perspective of a machine learn-

ing researcher interested in studying intelligence, robotics

is an appealing medium to study as it provides a lens into

the constraints that humans and animals encounter when

learning, uncovering aspects of intelligence that might not

otherwise be apparent to study when we restrict ourselves

to simulated environments. For example, robots receive

streams of raw sensory observations as a consequence of

their actions, and cannot practically obtain large amounts

of detailed supervision beyond observing these sensor

readings. This makes for a challenging but highly realistic

learning problem. Further, unlike agents in video games,

robots do not readily receive a score or reward function that

is shaped for their needs, and instead need to develop their

own internal representation of progress towards goals.

From the perspective of robotics research, using learning-

based techniques is appealing because it can enable robots

to move towards less-structured environments, to handle

unknown objects, and to learn a state representation suit-

able for multiple tasks.

Despite being an interesting medium, there is a signifi-

cant barrier for a machine learning researcher to enter

robotics and vice versa. Beyond the cost of a robot, there

are many design choices in choosing how to set-up the

algorithm and the robot. For example, reinforcement learn-

ing (RL) algorithms require learning from experience that

the robot autonomously collects itself, opening up many

choices in how the learning is initialized, how to prevent

unsafe behavior, and how to define the goal or reward.

Likewise, machine learning and RL algorithms also

1Robotics at Google, Mountain View, CA, USA
2Stanford University, Stanford, CA, USA
3Everyday Robots, X, The Moonshot Factory, Mountain View, CA, USA
4University of California Berkeley, Berkeley, CA, USA

Corresponding author:

Julian Ibarz, Google, Inc., 1600 Amphitheatre Parkway, Mountain View,

CA 94043, USA.

Email: julianibarz@google.com

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364920987859
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364920987859&domain=pdf&date_stamp=2021-01-31


provide a number of important design choices and hyper-

parameters that can be tricky to select.

Motivated by these challenges for the researchers in the

respective fields, our goal in this article is to provide a

high-level overview of how deep RL can be approached in

a robotics context, summarize the ways in which key chal-

lenges in RL have been addressed in some of our own pre-

vious work, and provide a perspective on major challenges

that remain to be solved, many of which are not yet the

subject of active research in the RL community.

There have been high-quality survey articles about

applying machine learning to robotics. Deisenroth et al.

(2013) focused on policy search techniques for robotics,

whereas Kober et al. (2013) focused on RL. More recently,

Kroemer et al. (2019) reviewed the learning algorithms for

manipulation tasks. Sünderhauf et al. (2018) identified cur-

rent areas of research in deep learning that were relevant to

robotics, and described a few challenges in applying deep

learning techniques to robotics.

Instead of writing another comprehensive literature

review, we first center our discussion around three case

studies from our own prior work. We then provide an in-

depth discussion of a few topics that we consider especially

important given our experience. This article naturally

includes numerous opinions. When sharing our opinions,

we do our best to ground our recommendations in empiri-

cal evidence, while also discussing alternative options. We

hope that, by documenting these experiences and our prac-

tices, we can provide a useful resource both for roboticists

interested in using deep RL and for machine learning

researchers interested in working with robots.

2. Background

In this section, we provide a brief, informal introduction to

RL, by contrasting it with classical techniques of program-

ming robot behavior. A robotics problem is formalized by

defining a state and action space, and the dynamics which

describe how actions influence the state of the system. The

state space includes internal states of the robot as well as

the state of the world that is intended to be controlled.

Quite often, the state is not directly observable–instead, the

robot is equipped with sensors, which provide observations

that can be used to infer the state. The goal may be defined

either as a target state to be achieved, or as a reward func-

tion to be maximized. We want to find a controller, (known

as a policy in RL parlance), that maps states to actions in a

way that maximizes the reward when executed.

If the states can be directly or indirectly observed, and a

model of the system dynamics is known, the problem can

be solved with classical methods such as planning or opti-

mal control. These methods use the knowledge of the

dynamics model to search for sequences of actions that

when applied from the start state, take the system to the

desired goal state or maximize the achieved reward.

However, if the dynamics model is unknown, the problem

falls into the realm of RL (Sutton and Barto 2018). In the

paradigm of RL, samples of state-action sequences (trajec-

tories) are required in order to learn how to control the

robot and maximize the reward. In model-based RL, the

samples are used to learn a dynamics model of the environ-

ment, which in turn is used in a planning or optimal control

algorithm to produce a policy or the sequence of controls.

In model-free RL, the dynamics are not explicitly modeled,

but instead the optimal policy or value function is learned

directly by interaction with the environment. Both model-

based and model-free RL have their own strengths and

weaknesses, and the choice of algorithm depends heavily

on the properties required. These considerations are dis-

cussed further in Sections 3 and 4.

3. Case studies in robotic deep RL

In this section, we present a few case studies of applica-

tions of deep RL to various robotic tasks that we have stud-

ied. The applications span manipulation, grasping, and

legged locomotion. The sensory inputs used range from

low-dimensional proprioceptive state information to high-

dimensional camera pixels, and the action spaces include

both continuous and discrete actions.

By consolidating our experiences from those case stud-

ies, we seek to derive a common understanding of the kinds

of robotic tasks that are tractable to solve with deep RL

today. Using these case studies as a backdrop, we point

Fig. 1. A PR2 learns to place a red trapezoid block into a shape-

sorting cube. With Levine et al. (2016), it learns local policies for

each initial position of the cube, which can be reset automatically

using the robot’s left arm. The local policies are distilled into a

global policy that takes images as input, rather than the cube’s

location.

Ibarz et al. 699



readers to outstanding challenges that remain to be solved

and are commonly encountered in Section 4.

3.1. Learning manipulation skills

Reinforcement learning of individual robotic skills has a

long history (Daniel et al., 2013; Ijspeert et al., 2002;

Kober et al., 2013; Konidaris et al., 2012; Manschitz et al.,

2014; Peters et al., 2010; Peters and Schaal, 2008). Deep

RL provides some appealing capabilities in this regard:

deep neural network policies can alleviate the need to

manually design policy classes, provide a moderate amount

of generalization to variable initial conditions and, perhaps

most importantly, allow for end-to-end joint training for

both perception and control, learning to directly map high-

dimensional sensory inputs, such as images, to control out-

puts. Of course, such end-to-end training itself presents a

number of challenges, which we will also discuss. We dis-

cuss a few case studies on single-task deep robotic learning

with a variety of different methods, including model-based

and model-free algorithms, and with different starting

assumptions.

3.1.1. Guided policy search. Guided policy search meth-

ods (Levine et al., 2016) were among the first deep RL

methods that could be tractably applied to learn individual

neural network skills for image-based manipulation tasks.

The basic principle behind these methods is that the neural

network policy is ‘‘guided’’ by another RL method, typi-

cally a model-based RL algorithm. The neural network pol-

icy is referred to as a global policy, and is trained to

perform the task successfully from raw sensory observa-

tions and under moderate variability in the initial condi-

tions. For example, as shown in Figure 1, the global policy

might be required to put the red shape into the shape sort-

ing cube at different positions. This requires the policy to

implicitly determine the position of the hole. However, this

is not supervised directly, but instead the perception

mechanism is learned end-to-end together with control.

Supervision is provided from multiple individual model-

based learners that learn separate local policies to insert the

shape into the hole at a specific position. In the case of the

experiment illustrated in Figure 1, nine local policies were

trained for nine different cube positions, and a single global

policy was then trained to perform the task from images.

Typically, the local policies do not use deep RL, and do not

use image inputs. They instead use observations that reflect

the low-dimensional, ‘‘true’’ state of the system, such as the

position of the shape-sorting cube in the previous example,

in order to learn more efficiently. Local policies can be

trained with model-based methods such as LQR-FLM

(Levine and Abbeel, 2014; Levine et al., 2016), which uses

linear quadratic regulator (LQR) with fitted time-varying

linear models, or model-free techniques such as PI2

(Chebotar et al., 2017a,b).

A full theoretical treatment of the guided policy search

algorithm is outside the scope of this article, and we refer

the reader to prior work on this topic (Levine and Abbeel,

2014; Levine et al., 2016; Levine and Koltun, 2013).

An important point of discussion for this article, how-

ever, is the set of assumptions underlying guided policy

search methods. Typically, such methods assume that the

local policies can be optimized with simple, ‘‘shallow’’

RL methods, such as LQR-FLM or PI2. This assumption

is reasonable for robotic manipulation tasks trained in

laboratory settings, but can prove difficult in (1) open-

world environments where the low-level state of the sys-

tem cannot be effectively measured and in (2) settings where

resetting the environment poses a challenge. For example,

in the experiment in Figure 1, the robot is holding the cube

in its left arm during training, so that the position of the

cube can be provided to the low-level policies and so that

the robot can automatically reposition the cube into different

positions deterministically. We discuss these challenges in

more detail in Sections 4.12 and 4.2.3.

Nonetheless, for learning individual robotic skills,

guided policy search methods have been applied widely

and to a broad range of behaviors, ranging from inserting

objects into containers and putting caps on bottles (Levine

et al., 2016), opening doors (Chebotar et al., 2017b), and

shooting hockey pucks (Chebotar et al., 2017a). In most

cases, guided policy search methods are very efficient in

Fig. 2. Examples of model-free-based algorithms learning skills in a few hours from low-dimensional state observations: (a) learning

to stack Lego blocks with Haarnoja et al. (2018a); (b) learning door opening with Gu et al. (2017).

700 The International Journal of Robotics Research 40(4-5)



terms of the number of samples, particularly as compared

to model-free RL algorithms, since the model-based local

policy learners can acquire the local solutions quickly and

efficiently. Image-based tasks can typically be learned in a

few hundred trials, corresponding to 2–3 hours of real-

world training, including all resets and network training

time (Chebotar et al., 2017a; Levine et al., 2016).

3.1.2. Model-free skill learning. Model-free RL algorithms

lift some of the limitations of guided policy search, such as

the need to decompose a task into multiple distinct and

repeatable initial states or the need for a model-based opti-

mizer that typically operates on a low-dimensional state

representation, but at the cost of a substantial increase in

the required number of samples. For example, the Lego

block stacking experiment reported by Haarnoja et al.

(2018a) required a little over 2 hours of interaction, whereas

comparable Lego block stacking experiments reported by

Levine et al. (2015) required about 10 minutes of training.

The gap in training time tends to close a bit when we con-

sider tasks with more variability: guided policy search gen-

erally requires a linear increase in the number of samples

with more initial states, whereas model-free algorithms can

better integrate experience from multiple initial states and

goals, typically with sub-linear increase in sample require-

ments. As model-free methods generally do not require a

lower-dimensional state for model-based trajectory optimi-

zation, they can also be applied to tasks that can only be

defined on images, without an explicit representation learn-

ing phase.

Although there is a long history of model-free RL in

robotics (Daniel et al., 2013; Ijspeert et al., 2002; Kober

et al., 2013; Konidaris et al., 2012; Manschitz et al., 2014;

Peters et al., 2010; Peters and Schaal, 2008), modern

model-free deep RL algorithms have been used more

recently for tasks such as door opening (Gu et al., 2017)

and assembly and stacking of objects (Haarnoja et al.,

2018a) with low-dimensional state observations. These

methods were generally based on off-policy actor–critic

designs, such as DDPG or NAF (Gu et al., 2016; Lillicrap

et al., 2015), soft Q-learning (Haarnoja et al., 2018a,b), and

soft actor–critic (SAC; Haarnoja et al., 2019). An illustra-

tion of some of these tasks is shown in Figure 2. From our

experiences, we generally found that simple manipulation

tasks, such as opening doors and stacking Lego blocks,

either with a single position or some variation in position,

can be learned in 2–4 hours of interaction, with either tor-

que control or end-effector position control. Incorporating

demonstration data and other sources of supervision can

further accelerate some of these methods (Riedmiller et al.,

2018; Večcerı́k et al., 2017). Section 4.2 describes other

techniques to make those approaches more sample

efficient.

Although most model-free deep RL algorithms that have

been applied to learn manipulation skills directly from real-

world data have used off-policy algorithms based on Q-

learning (Gu et al., 2017; Haarnoja et al., 2018a) or actor–

critic designs (Haarnoja et al., 2018b), on-policy policy gra-

dient algorithms have also been used. Although standard

configurations of these methods can require around 10

times the number of samples as off-policy algorithms, on-

policy methods such as TRPO (Schulman et al., 2015),

NPG (Kakade, 2002), and PPO (Schulman et al., 2017) can

be tuned to only be two or three times less efficient than

off-policy algorithms in some tasks (Peng et al., 2019). In

some cases, this increased sample requirement may be justi-

fied by ease of use, better stability, and better robustness to

suboptimal hyperparameter settings. On-policy policy gra-

dient algorithms have been used to learn tasks such as peg

insertion (Lee et al., 2019), targeted throwing Ghadirzadeh

et al. (2017), and dexterous manipulation (Zhu et al., 2019)

directly on real-world hardware, and can be further acceler-

ated with example demonstrations (Zhu et al., 2019).

Although, in principle, model-free deep RL algorithms

should excel at learning directly from raw image observa-

tions, in practice this is a particularly difficult training

regime, and good real-world results with model-free deep

RL learning directly from raw image observations have

only been obtained recently, with accompanying improve-

ments in the efficiency and stability of off-policy model-

free RL methods (Fujimoto et al., 2018; Haarnoja et al.,

2019, 2018b). The SAC algorithm can learn tasks in the

real world directly from images (Haarnoja et al., 2019;

Singh et al., 2019), and several other recent works have

studied real-world learning from images (Schoettler et al.,

2019; Schwab et al., 2019).

All of these experiments were conducted in relatively con-

strained laboratory environments, and although the learned

skills use raw image observations, they generally have limited

robustness to realistic visual perturbations and can only han-

dle the specific objects on which they are trained. We discuss

in Section 3.2 how image-based deep RL can be scaled up to

enable meaningful generalization. Furthermore, a major chal-

lenge in learning from raw image observations in the real

world is the problem of reward specification: if the robot

needs to learn from raw image observations, it also needs to

evaluate the reward function from raw image observations,

which itself can require a hand-designed perception system,

partly defeating the purpose of learning from images in the

first place, or otherwise require extensive instrumentation of

the environment (Zhu et al., 2019). We discuss this challenge

further in Section 4.9.

3.1.3. Learning predictive models for multiple skills with

visual foresight. Although there are situations where a sin-

gle skill is all a robot will need to perform, it is not suffi-

cient for general-purpose robots where learning each skill

from scratch is impractical. In such cases, there is a great

deal of knowledge that can be shared across tasks to speed

up learning. In this section, we discuss one particular case

study of scalable multi-task learning of vision-based

manipulation skills, with a focus on tasks that require

Ibarz et al. 701



pushing or picking and placing objects. Unlike in the previ-

ous section, if our goal is to learn many tasks with many

objects, a challenge discussed in detail in Section 4.5, it

will be most practical to learn from data that can be col-

lected at scale, without human supervision or even a

human attending the robot. As a result, it becomes impera-

tive to remove assumptions such as regular resets of the

environment or a carefully instrumented environment for

measuring reward.

Motivated by these challenges, the visual foresight

approach (Ebert et al., 2018; Finn and Levine, 2017)

leverages large batches of off-policy, autonomously col-

lected experience to train an action-conditioned video pre-

diction model, and then uses this model to plan to

accomplish tasks. The key intuition of this approach is that

knowledge learned about physics and dynamics can be

shared across tasks and largely decoupled from goal-centric

knowledge. These models are trained using streams of

robot experience, consisting of the observed camera images

and actions taken, without assumptions about reward infor-

mation. After training, a human provides a goal, by provid-

ing an image of the goal or by indicating that an object

corresponding to a specified pixel should be moved to a

desired position. Then, the robot performs an optimization

over action sequences in an effort to minimize the distance

between the predicted future and the desired goal.

This algorithm has been used to complete object rear-

rangement tasks such as grasping an apple and putting it

on a plate, reorienting a stapler, and pushing other objects

into configurations (Ebert et al., 2018; Finn and Levine,

2017). Further, it has been used for visual reaching tasks

(Byravan et al., 2018), object pushing and trajectory fol-

lowing tasks (Yen-Chen et al., 2020), for satisfying relative

object positioning tasks (Xie et al., 2018), and for cloth

manipulation tasks such as folding shorts, covering an

object with a towel, and rearranging a sleeve of a shirt

(Ebert et al., 2018). Importantly, each collection of tasks

can be performed using a single learned model and plan-

ning approach, rather than having to retrain a policy for

each individual task or object. This generalization precisely

results from the algorithms ability to leverage broad, auton-

omously collected datasets with hundreds of objects, and

the ability to train reusable, task-agnostic models from this

data.

Despite these successes, there are a number of limita-

tions and challenges that we highlight here. First, although

the data collection process does not require human involve-

ment, it uses a specialized set-up with the robot in front of

a bin with tilted edges that ensure that objects not fall out,

along with an action space that is constrained within the

bin. This allows continuous, unattended data collection,

discussed further in Section 4.7. Outside of laboratory set-

tings, however, collecting data in unconstrained, open-

world environments introduces a number of important chal-

lenges, which we discuss in Section 4.12. Second, inaccura-

cies in the model and reward function can be exploited by

the planner, leading to inconsistencies in performance. We

discuss these challenges in Sections 4.6 and 4.9. Finally,

finding plans for complex tasks pose a challenging optimi-

zation problem for the planner, which can be addressed to

some degree using demonstrations (for details, see Section

4.4). This has enabled the models to be used for tool use

tasks such as sweeping trash into a dustpan, wiping objects

off a plate with a sponge, and hooking out-of-reach objects

with a hook (Xie et al., 2019).

3.2. Learning to grasp with deep RL

Learning to grasp remains one of the most significant open

problems in robotics, requiring complex interaction with

previously unseen objects, closed-loop vision-based control

to react to unforeseen dynamics or situations . Indeed, most

object interaction behaviors require grasping the object as

the first step. Prior work typically tackles grasping as the

problem of identifying suitable grasp locations (Mahler

et al., 2018; Morrison et al., 2018b; ten Pas et al., 2017;

Zeng et al., 2018), rather than as an explicit control prob-

lem. The motivation for this problem definition is to allow

the visual problem to be completely separated from the

control problem, which becomes an open-loop control

problem. This separation significantly simplifies the prob-

lem. The drawback is that this approach cannot adapt to

dynamic environments or refine its strategy while execut-

ing the grasp. Can deep RL provide us with a mechanism

to learn to grasp directly from experience, and as a dynami-

cal and interactive process?

A number of works have studied closed-loop grasping

(Hausman et al., 2017; Levine et al., 2018; Viereck et al.,

2017; Yu and Rodriguez, 2018). In contrast to these

methods, which frame closed-loop grasping as a servoing

problem, QT-Opt Kalashnikov et al. (2018) uses a general-

Fig. 3. Close-up of our robot grasping set-up (left) and about

1,000 visually and physically diverse training objects (right).

Each robot consists of a KUKA LBR IIWA arm with a two-

finger gripper and an over-the-shoulder RGB camera.

702 The International Journal of Robotics Research 40(4-5)



purpose RL algorithm to solve the grasping task, which

enables multi-step reasoning, in other words, the policy

can be optimized across the entire trajectory. In practice,

this enables this method to autonomously acquire

complex grasping strategies, some of which we illustrate in

Figure 4. This method is also entirely self-supervised, using

only grasp outcome labels that are obtained automatically

by the robot. Several works have proposed self-supervised

grasping systems (Levine et al., 2018; Pinto and Gupta,

2016), but to the best of the authors’ knowledge, this

method is the first to incorporate a multi-step optimization

via RL into a generalizable vision-based system trained on

self-supervised real-world data.

Related to this work, Zeng et al. (2018) recently pro-

posed a Q-learning framework for combining grasping and

pushing. QT-Opt utilizes a much more flexible action space,

directly commanding gripper motion in all degrees of free-

dom in three dimensions, and exhibits substantially better

performance and generalization. Finally, in contrast to many

current grasping systems that utilize depth sensing (Mahler

et al., 2018; Morrison et al., 2018a) or wrist-mounted cam-

eras (Morrison et al., 2018a; Viereck et al., 2017), QT-Opt

operates on raw monocular RGB observations from an

over-the-shoulder camera that doesn’t need to be calibrated.

The performance of QT-Opt indicates that effective learning

can achieve excellent grasp success rates even with this

rudimentary sensing set-up.

In this work, we focus on evaluating the success rate of

the policy in grasping never seen during training objects in

a bin using a top-down grasping (four degrees of freedom).

This task definition simplifies some robot safety chal-

lenges, which are discussed more in Section 4.11. However,

this problem retains the challenging aspects that have been

hard to deal with: unknown object dynamics, geometry,

vision-based closed-loop control, self-supervised approach

as well as hand–eye coordination by removing the need to

calibrate the entire system (camera and gripper locations as

well as workspace bounds are not given to the policy).

For this specific task, QT-Opt can reach 86% grasp suc-

cess when learning completely from data collected from

previous experiments which we refer to as offline data, and

can quickly reach 96% success with an additional online

data of 28,000 grasps collected during a joint fine-tuning

training phase. Those results show that RL can be scalable

and practical on a real robotic application by either allowing

to reuse past collected experiences (offline data), and poten-

tially training purely offline (no additional robot interaction

required) or a combination of offline and online approaches

(called joint fine-tuning). Leveraging offline data makes

deep RL a practical approach for robotics as it allows to

Fig. 4. Eight grasps from the QT-Opt policy, illustrating some of the strategies discovered by our method: (a), (b) pregrasp

manipulation; (c), (d) grasp readjustment; (e), (f) grasping dynamic objects and recovery from perturbations; and (g), (h) grasping in

clutter.

Ibarz et al. 703



scale the training dataset to a large enough size to allow

generalization to happen, with a small robotic fleet of seven

robots and over a period of a few months, or by leveraging

simulation, to generalize with a collection effort of just a

few days (James et al., 2019; Rao et al., 2020) (see Section

4.3 for more examples of sim-to-real techniques).

Because the policy is learned by optimizing the reward

across the entire trajectory (optimizing for long-term

reward using Bellman backup), and is constantly replan-

ning its next move with vision as an input, the policy can

learn complex behaviors in a self-supervised manner that

would have been hard to program, such as singulation,

pregrasp manipulation, dealing with a cluttered scene,

learning retrial behaviors as well as handling environment

disturbance and dynamic objects (Figure 4). Retrial beha-

viors can be learned because the policy can quickly react to

the visual input, at every step, which may show in one step

that the object dropped after the gripper lifted it from the

bin, and thus deciding to reattempt a grasp in the new loca-

tion the object fell to.

Section 4.2 describes some of the design principles we

used to obtain good data efficiency. Section 4.5 discusses

strategies that allowed us to generalize properly to unseen

objects. Section 4.7 describes ways we managed to scale to

seven robots with one human operator as well as enable 24

h/7 day operations. Section 4.4 discusses how we side-

stepped exploration challenges by leveraging scripted

policies.

The lessons from this work have been that: (1) a lot of

varied data was required to learn generalizable grasping,

which means that we need unattended data collection and a

scalable RL pipeline; (2) the need for large and varied data

means that we need to leverage all of the previously collected

data so far (offline data) and need a framework that makes

this easy is crucial; (3) to achieve maximal performance,

combining offline data with a small amount of online data

allows us to go from 86% to 96% grasp success.

3.3. Learning legged locomotion

Although walking and running seems effortless activities

for us, designing locomotion controllers for legged robots

is a long-standing challenge (Raibert, 1986). RL holds the

promise to automatically design high-performance locomo-

tion controllers (Ha et al., 2018; Hwangbo et al., 2019;

Kohl and Stone, 2004; Lee et al., 2020; Tedrake et al.,

2015). In this case study, we apply deep RL techniques on

the Minitaur robot (Figure 5), a mechanically simple and

low-cost quadruped platform (De, 2017). We have over-

come significant challenges and developed various

learning-based approaches, with which agile and stable

locomotion gaits emerge automatically.

Simulation is an important prototyping tool for robotics,

which can help to bypass many challenges of learning on

real systems, such as data efficiency and safety. In fact,

most of the prior work used simulation (Brockman et al.,

2016; Coumans and Bai, 2016) to evaluate and benchmark

the learning algorithms (Hämäläinen et al., 2015; Heess

et al., 2017; Peng et al., 2018a; Yu et al., 2018). Using

general-purpose RL algorithms and a simple reward for

walking fast and efficiently, we can train the quadruped

robot to walk in simulation within 2–3 hours. However, a

policy learned in simulation usually does not work well on

the real robot. This performance gap is known as the reality

gap. Our research has identified the key causes of this gap

and developed various solutions. Please refer to Section 4.3

for more details. With these sim-to-real transfer techniques,

we can successfully deploy the controllers learned in simu-

lation on the robots with zero or only a handful of real-

world experiments (Tan et al., 2018; Yu et al., 2019).

Without much prior knowledge and manual tuning, the

learning algorithm automatically finds policies that are

more agile and energy efficient than the controllers devel-

oped with the traditional approaches.

Given the initial policies learned in simulation, it is

important that the robots can continue their learning process

in the real-world in a life-long fashion to adapt their poli-

cies to the changing dynamics and operation conditions.

There are three main challenges for real-world learning of

locomotion skills. The first is sample efficiency. Deep RL

often needs tens of millions of data samples to learn mean-

ingful locomotion gaits, which can take months of data col-

lection on the robot. This is further exacerbated by the need

of extensive hyperparameter tuning. We have developed

novel solutions that have significantly reduced the sample

complexity (Section 4.2) and the need for hyperparameter

tuning (Section 4.1).

Robot safety is another bottleneck for real-world train-

ing. During the exploration stage of learning, the robot

often tries noisy actuation patterns that cause jerky motions

and severe wear-and-tear of the motors. In addition, because

the robot has yet to master balancing skills, the repeated

falling quickly damages the hardware. We discuss in

Section 4.11 several techniques that we employ to mitigate

Fig. 5. The Minitaur robot learns to walk from scratch using

deep RL.

704 The International Journal of Robotics Research 40(4-5)



the safety concerns for learning locomotion with real

robots.

The last challenge is asynchronous control. On a physi-

cal robot, sensor measurements, neural network inference,

and action execution usually happen simultaneously and

asynchronously. The observation that the agent receives

may not be the latest owing to computation and communi-

cation delays. However, this asynchrony breaks the funda-

mental assumption of the markovian decision process

(MDP). Consequently, the performance of many deep RL

algorithms drop dramatically in the presence of asynchro-

nous control. In locomotion tasks, asynchronous control is

essential to achieve high control frequency. In other words,

to learn to walk, the robot has to think and act at the same

time. We discuss our solutions to this challenge in Section

4.8, for both model-free and model-based learning

algorithms.

With the progress to overcome these challenges, we have

developed an efficient and autonomous on-robot training

system (Haarnoja et al., 2019), in which the robot can learn

walking and turning, from scratch in the real world, with

only 5 min of data (Yang et al., 2020) and little human

supervision.

4. Outstanding challenges in deep RL and

strategies to mitigate them

In the previous section, we showed a few examples of appli-

cations of deep RL on robotic tasks that enabled progress

over previous approaches in terms of generalization to a

large variety of environments, objects, or more complex

behaviors. Those applications required to solve or at least

mitigate a few challenges specific to applying deep RL on

real robots that have been identified over the years. In this

section, we describe those challenges and provide, when-

ever available, our current best mitigation strategies that

enabled us to apply deep RL to the applications we dis-

cussed in Section 3.

4.1. Reliable and stable learning

Deep RL algorithms are notoriously difficult to use in prac-

tice (Irpan, 2018). The performance of commonly used RL

methods depends on careful settings of the hyperpara-

meters, and often varies substantially between runs (i.e., for

different ‘‘random seeds’’ in simulation). Off-policy algo-

rithms, which are particularly desirable in robotics owing

to their improved sample efficiency, can suffer even more

from these issues than on-policy policy gradient methods.

We can broadly classify the challenges of reliable and sta-

ble learning into two groups: (1) reducing sensitivity to

hyperparameters; and (2) reducing issues owing to local

optima and delayed rewards.

One approach to reducing the burden of tuning hyper-

parameters is to use automated hyperparameter tuning

methods (Chiang et al., 2019). However, such methods

typically require running RL algorithms many times, which

is impractical outside of simulated domains. A potentially

promising alternative available for off-policy RL methods

is to run multiple learning processes with different hyper-

parameters on the same off-policy data buffer, effectively

using one run’s worth of data for multiple independent

learning processes. Recent work has explored this idea in

simple simulated domains (Khadka et al., 2019), though it

remains to be seen if such an approach can be scaled up to

real-world robotic learning settings. Another approach is to

develop algorithms that automatically tune their own hyper-

parameters, as in the case of SAC with automated tempera-

ture tuning, which has been demonstrated to greatly reduce

the need for hyperparameter tuning across domains, thus

enabling much easier deployment on real-world robotic

systems (Haarnoja et al., 2019). Lastly, we can aim to

develop methods that are, through their design, more robust

to hyperparameter settings. This option, although the most

desirable, is also the toughest, because it likely requires an

in-depth understanding for the real reasons behind the sen-

sitivity of current RL algorithms, which has so far proven

elusive.

The second challenge to reliable and stable learning is

local optima and delayed rewards. In contrast to supervised

learning problems, which put a convex loss function on top

of a nonlinear neural network function approximator, the

RL objective itself can present a challenging optimization

landscape independently of the policy or value function

parameterization, which means that the usual benefits of

over-parameterized networks do not fully resolve issues

relating to local optima. This is indeed part of the reason

why different runs of the same algorithm can produce drasti-

cally different solutions, and it presents a major challenge

for real-world deployment, where even a single run can be

exceptionally time-consuming. Some methods might pro-

vide better resilience to local optima by preferring stochastic

policies that can explore multiple strategies simultaneously

(Fox et al., 2016; Haarnoja et al., 2017, 2018c; Rawlik et al.,

2013; Toussaint, 2009; Ziebart et al., 2008). More sophisti-

cated exploration strategies might further alleviate these

issues (Fu et al., 2017; Pathak et al., 2017), and parameter-

space exploration strategies might offer a particularly pro-

mising approach to combating this issue (Burda et al.,

2019). Indeed, we have observed in some of our own experi-

ments that when collecting large amount of on-policy data is

not an issue, direct parameter search methods such as aug-

mented random search (Mania et al., 2018) can often be

substantially easier to deploy than more classic RL methods,

likely to their ability to avoid local optima by exploring

directly in the parameter space. It may therefore prove fruit-

ful to investigate methods that combine entropy maximiza-

tion and parameter space exploration as a way to avoid the

local optima and delayed reward issues that make real-world

deployment challenging.

Ibarz et al. 705



4.2. Sample efficiency

Many popular RL algorithms require millions of stochastic

gradient descent (SGD) steps to train policies that can

accomplish complex tasks (Mnih et al., 2013; Schulman

et al., 2017). This often means that millions of interaction

with the real world will be required for robotic tasks, which

is quite prohibitive in practice. Without any improvement

in sample efficiency to those algorithms, the number of

training steps will only increase as the model size increases

to tackle more and more complex robotic tasks.

We have found that some classes of RL algorithms are

much more sample efficient than others. RL algorithms can

be categorized into model-based versus model-free meth-

ods. Among the model-free methods, they are often cate-

gorized into on-policy and off-policy methods. Generally

speaking, among model-free techniques, off-policy meth-

ods are about an order of magnitude more data efficient

than on-policy methods. Model-based methods could be

another order of magnitude more data efficient than their

model-free counterparts. In the following sections we dis-

cuss our experiences with these methods.

4.2.1. Off-policy algorithms. On-policy algorithms such as

policy gradient methods (Peters and Schaal, 2006;

Schulman et al., 2015) have recently become popular

owing to their stability and their ability to learn policies for

a wide variety of tasks. Unfortunately, on-policy algorithms

have the constraint to only use a sample coming from the

latest policy that is being trained. This has the unfortunate

consequence that the number of required data samples is

equal and often larger to the number of training steps

needed to train a model, which, in practice, can be millions

of steps. Training an on-policy model may thus require sev-

eral millions and sometimes billions of action executions in

the real world, which is often prohibitive.

Off-policy methods do not assume that the samples are

coming from the current trained policy. In practice, this

means the samples can be reused multiple times across

back-propagations, potentially hundreds or thousands of

times, without any over-fitting in complex visual tasks. In

Kalashnikov et al. (2018), up to 15 training steps of batch

size 32 were done per collect step on real robots during a

fine-tuning phase, which is equivalent to 480 gradient des-

cents per collect step. Recently, SAC (Haarnoja et al.,

2019), an off-policy method, was able to learn to walk on a

quadruped robot, from scratch, with just 2 hours of real

robot data coming from a single robot. Note that further

increasing the ratio between the number of training steps

and the number of collected samples may decrease the

training performance owing to overfitting. The optimal

ratio is often task dependent, policy dependent, or algo-

rithm dependent, which is an important hyperparameter to

tune.

4.2.2. Model-based algorithms. Model-based algorithms

such as Draeger et al. (1995) choose the optimal action by

leveraging a model of the environment. The agent may

learn from the experience generated using this model

instead of collected in the real environment. Thus, the

amount of data required for model-based methods is usu-

ally much less than their model-free counterparts. For

example, we leveraged such a technique to effectively learn

to walk, from scratch, with only a few minutes of real robot

data (Nagabandi et al., 2018; Yang et al., 2020). The down-

side is that these methods require to have access to such a

Fig. 6. PR2 learning to scoop a bag of rice into a bowl with a spatula (left) using a learned visual state representation (right), using

(Finn et al., 2016b). The feature points visualized on the right images were learned without supervision with an autoencoder.

706 The International Journal of Robotics Research 40(4-5)



model, which is often challenging to acquire in practice.

We cover model-based techniques in more detail in Section

4.6.

4.2.3. Input remapping for high-dimensional

observations. When learning from high-dimensional

observations, e.g., image observations, learning visual

representations can occupy substantial amount of training

and sample complexity. One trick for addressing this chal-

lenge is via input remapping. In particular, when policies

are trained in a laboratory environment, the true underlying

state of the system may be observable during training, even

when the policy to be learned must use vision. In these set-

tings, one policy or multiple local policies can be effi-

ciently learned without vision using privileged state

information, and these policies can be distilled into a final

policy that takes raw observations as input and is trained to

produce the output of the non-vision policies. This trick

has been successful in a number of settings including

robotic manipulation from image pixels (Levine et al.

2016; Pinto et al. 2018), autonomous driving (Chen et al.

2020), and robotic locomotion from a history of proprio-

ceptive sensor measurements (Lee et al. 2020b).

When the true states of objects cannot be measured and

the local policies must themselves handle image observa-

tions, these observations can be first encoded into a lower-

dimensional state space via an autoencoder, such as a spa-

tial autoencoder that summarizes the image with a set of

feature points in image space (Finn et al., 2016b): an exam-

ple of such features are illustrated in Figure 6.

Unsupervised feature learning methods such as autoenco-

ders (Finn et al., 2016b; Ghadirzadeh et al., 2017), contras-

tive losses (Sermanet et al. 2018), and correspondence

learning (Florence et al. 2018, 2019), provide a reasonable

solution in cases where the inductive biases of the unsuper-

vised algorithm effectively match the needs of the state

representation.

4.2.4. Offline training. Image classifiers used by compa-

nies, such Facebook or Google, are trained on tens of mil-

lion of labeled images (Kuznetsova et al., 2020), or

pretrained on billions of images (Mahajan et al., 2018; Xie

et al., 2020), to reach the level of quality required by certain

products. Natural language processing (NLP) systems for

machine translation, or speech recognition systems such as

BERT (Devlin et al., 2019), also require billions of samples

to generalize and have descent performance for real appli-

cations. In a way, supervised learning systems are also inef-

ficient, but in many applications, the gains in generalization

and performance that deep learning provides compensates

for the cost of collecting such large amounts of data.

Similarly, a general-purpose robot may also require a large

volume of data to train on, unless significant improvements

have been made in our learning algorithms. Offline training

enable us to use all the data collected so far to train our

policies, and thus, potentially scale to billions of real world

samples.

Off-policy methods can leverage all the data collected in

the past, across many experiments. In most RL bench-

marks, off-policy methods are still collecting new data as

the training happens. However, off-policy methods can also

be trained without collecting any new data during the train-

ing phase; similar to supervised learning problems. We call

this offline training, whereas other work may call it batch

RL. In Section 3.2, we have shown that this mode of train-

ing allowed us to generalize grasping policies to unseen

objects with just 500,000 trials. If we compare this dataset

to the ImageNet dataset, which has about 1 million images,

we can see that the amount of data to learn this complex

robotic task from vision sensor, using RL, is in the same

order of magnitude as learning to classify 1,000 types of

objects. In both cases, the learned models have shown the

ability to generalize to a wide variety of unseen object

instances. There are challenges to stabilize offline training.

The offline training can become unstable if the state–action

distribution from the latest policy differs too much from

the one that was used to collect the training data. Recent

work just started to identify and address to some extent this

specific problem (Agarwal et al., 2020; Fujimoto et al.,

2019; Kumar et al., 2019).

An important technique to bypass the sample efficiency

problem is to use simulators, which can generate realistic

experience much faster than real time. Combining with

sim-to-real transfer techniques, simulators allow us to learn

policies that can be deployed in the real world with a mini-

mal amount of real-world interaction. In the next section,

we discuss the use of simulation.

4.3. Use of simulation

Simulation is becoming increasingly accurate over the

years, which makes it a good proxy to real robots. One bot-

tleneck of robotic learning is to collect a large amount of

data autonomously and safely. While collecting enough real

data on the physical system is slow and expensive, simula-

tion can run orders of magnitude faster than real time, and

can start many instances simultaneously. In addition, data

can be collected continuously without human intervention.

On the real robot, human supervision is always needed for

resetting experiments, monitoring hardware status and

ensuring safety. In contrast, experiments can be reset auto-

matically, and safety is not a problem in simulation. Thus,

prototyping in simulation is faster, cheaper, and safer than

experimenting on the real robot. These enable fast iteration

of developing and tuning learning algorithms. The fast pace

of experiments allow us to efficiently shape the reward

function, sweep the hyperparameters, fine-tune the algo-

rithm, and test whether a given task falls within the robot’s

hardware capability. From our own experience, we have

benefited tremendously from prototyping in simulation

(Tan et al., 2018).

Ibarz et al. 707



In addition to prototyping, can we directly use the poli-

cies trained in simulation on real robots? Unfortunately,

deploying these policies can fail catastrophically owing to

the reality gap. Modeling errors cause a mismatch in robot

dynamics, and rendered images often do not look like their

real-world counterparts. The reality gap is a major obstacle

that prevents the application of learning to robotics. In

simulations, the robots can learn to backflip (Peng et al.,

2018a) bicycle stunts (Tan et al., 2014), and even put on

clothes (Clegg et al., 2018). In contrast, it is still very chal-

lenging to teach robots to perform basic tasks such as walk-

ing in the real world. Bridging the reality gap will allow

robotics to fully tap into the power of learning. More

importantly, bridging the reality gap is important to push

the advancement of machine learning for robotics towards

the right direction. In the last few years, the OpenAI Gym

benchmark (Brockman et al., 2016) is the key driving force

behind the development of deep RL and its application to

robotics. However, these simulation benchmarks are con-

siderably easier than their real-world equivalent. It does not

take into consideration the detailed dynamics, partial obser-

vability, latency, and safety aspects of robotics. Thus, the

scores which researchers optimize their algorithms for can

be misleading: the learning algorithms that perform well in

the gym environments may not work well on real robots. If

we can bridge this reality gap, we would have a far better

simulation benchmark for robotics, which can focus the

research efforts to the most pressing challenges in robot

learning, such as non-Markovian assumption (asynchro-

nous control), partial observability, and safe exploration

and actuation. In the following, we outline a few methods

that have been employed successfully for sim-to-real

transfer.

4.3.1. Better simulation. Addressing Partial

Observations In simulation, we can access the ground-truth

state of the robot, which can significantly simplify the

learning of tasks. In contrast, in the real-world, we are

restricted to partial observations that are usually noisy and

delayed, due to the limitation of onboard sensors. For

example, it is difficult to precisely measure the root transla-

tion of a legged robot. To eliminate this difference, we can

remove the inaccessible states during training (Tan et al.

2018), apply state estimation, add more sensors (e.g.

Motion Capture) (Haarnoja et al. 2019) or learn to infer the

missing information (e.g. reward) (Yang et al. 2019). On

the other hand, if used properly, the groundtruth states in

simulation can significantly speed up learning. Learning by

cheating (Chen et al. 2020) first leveraged the ground-truth

states to learn a privileged agent, and in the second stage,

imitated this agent to remove the reliance on the privileged

information.

4.3.2. Better simulation. The reality gap is caused by the

discrepancy between the simulation and the real-world phy-

sics. This error has many sources, including incorrect

physical parameters, unmodeled dynamics, and stochastic

real environment. However, there is no general consensus

about which of these sources plays a more important role.

After a large number of experiments with legged robots,

both in simulation and on real robots, we found that the

actuator dynamics and the lack of latency modeling are the

main causes of the model error. Developing accurate mod-

els for the actuator and latency significantly narrow the

reality gap (Tan et al., 2018). We successfully deployed

agile locomotion gaits that are learned in simulation to the

real robot without the need for any data collected on the

robot.

4.3.3. Domain randomization. The idea behind domain

randomization is to randomly sample different simulation

parameters while training the RL policy. This can include

various dynamics parameters (Peng et al., 2018b; Tan

et al., 2018) of the robot and the environment, as well as

visual and rendering parameters such as textures and light-

ing (Sadeghi and Levine, 2017; Tobin et al., 2017). Similar

to data augmentation methods in supervised learning, poli-

cies trained under such diverse conditions tend to be more

robust to such variations, and can thus perform better in

the real world.

4.3.4. Domain adaptation. The success of adversarial

training methods such as generative adversarial networks

(Goodfellow et al., 2014) have resulted in their application

to several other problems, including sim-to-real transfer.

Adapter networks have been trained that convert simulated

images to look like their real-world counterparts, which

can then be used to train policies in simulation (Bousmalis

et al., 2018, 2017; James et al., 2017; Rao et al., 2020;

Shrivastava et al., 2017). An alternative approach is that of

James et al. (2019), which trains an adapter network to

convert real-world images to canonical simulation images,

allowing a policy trained only in simulation to be applied

in the real world. Training of the real-to-sim adapter was

achieved by using domain-randomized simulation images

as a proxy for real-world images, removing the need for

real-world data altogether. The resulting policy achieved

70% grasp success in the real world with the QT-Opt algo-

rithm, with no real-world data, and reaches a success rate

of 91% after fine-tuning on just 5,000 real-world grasps: a

result which previously took over 500,000 grasps to

achieve.

4.4. Side-stepping exploration challenges

In RL, ‘‘exploration’’ refers most generally to the problem

of choosing a policy that allows an agent to discover high-

reward regions of the state space. Such a policy may not

itself have very high average reward: typically, good explo-

ration strategies are risk-seeking (Bellemare et al., 2016),

highly stochastic (Fox et al., 2016; Haarnoja et al., 2017;

Osband et al., 2016; Rawlik et al., 2013; Toussaint, 2009;

708 The International Journal of Robotics Research 40(4-5)



Ziebart et al., 2008), and prioritize novelty over exploitation

(Bellemare et al., 2016; Fu et al., 2017; Pathak et al., 2017).

In practice, effective exploration is particularly challenging

in tasks with sparse reward. In the most extreme version of

this problem, the agent must essentially find a (high-

reward) needle in a (zero-reward) haystack. Unfortunately,

the most natural formulation of many practical robotics

tasks has this property. For many tasks, it is most natural to

formulate them as binary reward tasks (Irpan, 2018): a

grasping robot can either succeed or fail at grasping an

object, a pouring robot can pour water into a glass or not,

and a mobile robot can reach the destination or not. One

can reasonably regard these as the most basic task specifi-

cation, with any more informative reward (e.g., distance to

the goal) as additional engineer-provided shaping.

For this reason, a number of prior works have focused

on studying exploration for sparse-reward robotic tasks

(Andrychowicz et al., 2017; Schoettler et al., 2019).

Numerous methods for improving exploration have been

proposed in the literature (Fox et al., 2016; Haarnoja et al.,

2017; Osband et al., 2016; Pathak et al., 2017; Rawlik

et al., 2013; Toussaint, 2009; Ziebart et al., 2008), and

many of these can be applied directly to real-world robotic

RL. However, for certain real-world robotic tasks, this

problem can often be side-stepped using a combination of

relatively simple manual engineering and demonstration

data, and this provides a very powerful mechanism for

avoiding a major challenge and instead focusing on other

issues, such as efficiency and generalization. The use of

demonstrations to mitigate exploration challenges has a

long history in robotics (Daniel et al., 2013; Ijspeert et al.,

2002; Manschitz et al., 2014; Peters and Schaal, 2008), and

has been used in a number of recent works (Jain et al.,

2019; Nair et al., 2018). There are various ways to

incorporate the demonstrations into the learning process,

which are discussed in the following.

4.4.1. Initialization. A simple way to incorporate demon-

strations to mitigate the exploration challenge is to pretrain

a policy network with demonstrations via learning (also

called behavioral cloning) (Bojarski et al., 2016). This

approach has been used in a variety of prior robotic learning

works (Daniel et al., 2013; Ijspeert et al., 2002; Manschitz

et al., 2014; Peters and Schaal, 2008)

Although this approach is simple and often effective, it

suffers from two major challenges. First, imitation learning

effective guarantees on performance both in theory and in

practice (Ross et al., 2011), and the resulting policies can

suffer from ‘‘compounding errors,’’ where a small mistake

throws the policy into an unexpected state, where it makes

a bigger mistake. Second, the learned initialization can be

easily forgotten by the RL. As it is common practice to

begin RL with a high random exploration factor, RL can

quickly decimate the pretrained policy, and end up in a state

that is no better than random initialization. Note that some

algorithms and policy representations are particularly amen-

able to initialization from demonstrations. For example,

dynamic movement primitives (DMPs) can be initialized

from demonstrations in a way that does not suffer from

compounding errors (Schaal, 2006), whereas guided policy

search can be initialized from demonstration by pretraining

the local policies, which, in practice, tends to be a lot more

stable than demonstration pretraining for standard policy

gradient or actor–critic methods (Levine et al., 2015).

4.4.2. Data aggregation. Another technique for incorpor-

ating demonstrations in off-policy model-free RL is to add

demonstration data to the data buffer for the off-policy

Fig. 7. Using both unsupervised interaction and teleoperated demonstration data, the robot learns a visual dynamics model and action

proposal model that enables it to perform new tasks with novel, previously unseen tools (using Xie et al., 2019). The task specification

is shown on the left and the robot performing the task is shown on the right.

Ibarz et al. 709



algorithm. This method is often used with Q-learning or

actor–critic style algorithms (Večerı́k et al., 2017; Wu et al.,

2019). This can, in principle, mitigate the exploration chal-

lenge, because the algorithm is exposed to high-reward

behavior, but tends to be problematic in practice, because

commonly used approximate dynamic programming meth-

ods (i.e., value function estimation) need to see both good

and bad experience to learn which actions are desirable.

Therefore, when the demonstrations are much better than

the agent’s own experience, the value function will typically

learn that the demonstrated states are better, but might fail

to learn which actions must be taken to reach those states.

Therefore, this tends to be much more effective when com-

bined with the next method.

4.4.3. Joint training. Instead of simply pretraining the pol-

icy with supervised learning, we can train it jointly, adding

together the loss from the policy gradient objective with the

loss for behavioral cloning (Hester et al., 2018; Johannink

et al., 2019; Wu et al., 2019). This simple approach pro-

vides a much stronger signal to the learner, generally suc-

ceeding in staying close to the demonstrations, but at the

cost of biasing policy learning: if the demonstrations are

suboptimal, the behavioral cloning loss may prevent the RL

algorithm from discovering a better policy.

4.4.4. Demonstrations in model-based RL. In model-based

RL, demonstration data can also be aggregated with the

agent’s experience to produce better models. However, in

contrast to the model-free setting, for model-based RL this

approach can be quite effective, because it would enable

the learned model to capture correct dynamics in important

parts of the state space. When combined with a good plan-

ning method, which can also use the demonstrations (e.g.,

as a proposal distribution), including demonstrations into

the model training dataset can enable a robot to perform

complex behaviors, such as using tools (Figure 7), which

would be extremely difficult to discover automatically (Xie

et al., 2019).

4.4.5. Scripted policies. In addition to demonstrations, we

can also overcome the exploration challenge with a moder-

ate amount of manual engineering, by designing ‘‘scripted’’

policies that can serve as initialization. Scripted policies

can be incorporated into the learning process in much the

same way as demonstrations, and can provide considerable

benefit. In the QT-Opt grasping system (Figure 3), scripted

policies are used to prepopulate the data buffer with a

higher proportion of successful grasps than would be

obtained with purely random actions. Although aggregating

such data from a small number of demonstrations would

have limited effectiveness, the advantage of a scripted pol-

icy is that it can be used to collect very large datasets. In

the final QT-Opt experiment, the scripted policy was used

to collect 200,000 grasp attempts, with a success rate

around 15–30%. Although this success rate is much lower

than the final policy, which succeeds 96% of the time, it

was sufficient to bootstrap an effective vision-based grasp-

ing skill.

Another reason why we pre-populate the replay buffer

only with a scripted policy is to help keep a ratio of suc-

cessful and unsuccessful episodes close to 50%. This is

motivated by techniques trying to re-balance equally each

class when training a multi-class classifier as in Chawla et

al. (2002). A poor performing policy doesn t generate good

data to train a Q-function since it requires both good and

bad attempts to be able to learn a good ranking of what a

good or bad action is. At the beginning of the training, the

policy is bad because the Q-function being learned hasn t

converged yet. Such a policy only generates unsuccessful

episodes which can t be used to train a good Q-function.

This is why the policy is only used to generate data once it

reached a certain amount of performance. Our rule of

thumb is to only start using the trained policy for data col-

lection once it has reached 20+% success.

Scripted policies can also be used in a ‘‘residual’’ RL

framework, which serves a similar purpose as joint training

with demonstrations. In residual RL (Johannink et al.,

2019; Silver et al., 2018; Tan et al., 2018, the reinforcement

learner learns a policy that is additively combined with the

scripted policy, i.e., pfinal(s)= pscripted (s)+ plearned(s).
The motivation is similar: unlike pure initialization, the

residual approach always retains the scripted component.

However, unlike joint training with demonstrations, resi-

dual RL can overcome the bias in the scripted policy by

learning to ‘‘undo’’pscripted(s), and therefore can in princi-

ple still converge to the optimal policy.

4.4.6. Reward shaping. Shaping the reward function can

also side-step exploration challenges by providing the RL

algorithm with additional guidance for exploration. For

example, for a reaching task, one can use the distance of

the agent to the goal as a negative reward which will signif-

icantly speed up the exploration. We ve used this approach

in several works for learning manipulation skills, such as

door opening and peg insertion, where object location

information is available during training (Gu et al. 2017;

Levine et al. 2016). This approach is very effective for any

tasks where the agent has to go to a specific know location,

such as in navigation tasks Francis et al. (2020). However,

we ve found in practice that such an approach can be diffi-

cult to scale to many diverse manipulation tasks. This is

due to two factors. First, it can be very difficult to weight

the shaping terms properly to avoid any greedy and unin-

tentional sub-optimal behaviors. For example, to open the

door, one may want to get close to the handle, but may

require to take some distance from it to take a different

approach with the gripper if the handle can t be moved

with the current orientation. Such behavior would go

against the shaping of the reward, and thus the reward

shaping may make it impossible to discover such a beha-

vior if its weight is too high. Second, and perhaps more

710 The International Journal of Robotics Research 40(4-5)



importantly in real-world environments, such shaped

reward functions require knowledge of the precise state of

the environment, such as object locations relative to the

robot. This is feasible in simulation but can be very chal-

lenging on real robots, where the only input may be an

image. Once one wants to tackle multiple manipulation

tasks, dealing with those variations may be difficult to pro-

gram even in simulation, since the state configuration one

has to deal with can grow exponentially. While we have

discussed how the challenge of exploration can be side-

stepped by employing demonstrations, scripted policies,

and reward shaping, the study of exploration and curiosity

in robotic learning still plays an important role. Indeed, we

can regard those approaches as a means to parallelize

research on robotic learning: if we aim to study perception,

generalization, and complex tasks, we can avoid needing to

solve exploration as a prerequisite.

4.5. Generalization

Generalization to any new skills, environments, or tasks

still remains an unsolved problem. Solving this problem is

required to allow robots to operate in a wide variety of real-

world scenarios. However, there are a few restricted situations

where we have seen good generalization. In the next section,

we cover two important aspects: (1) good data diversity guar-

anteeing to cover the space we want to generalize and (2) hav-

ing a correct train and test evaluation protocol that allows us

to optimize our system towards better generalization.

4.5.1. Data diversity. Good data diversity that covers the

space of generalization we care about is critical to have

good performance with deep learning. Deep RL is no

exception. In QT-Opt, we cared about generalization to the

objects that were never seen during training. Thus, we

made sure that during data collection, the agent would see

more than 1,000 different object types. If we had only col-

lected data with a small set of objects, we may not achieve

the generalization capability that we need. It is the same

analogy that we cannot expect a model trained on CIFAR

(with 100 classes) to generalize as well as a model trained

on ImageNet (with 1,000 classes). This is also true for

robotics. If we want to generalize to any objects, we may

need to collect data with thousands of them. If we want the

policy to be agnostic to the robot arm geometry, we may

need to train with thousands of arm variations, etc.

A lot of recent work has leveraged domain randomiza-

tion in simulation to get good sim-to-real transfer, because

they cared about generalization to a new environment.

There is a tradeoff here as more environment diversity may

cause the policies to have lower performance. Often this

can be alleviated with larger and better neural network

architectures. As an example, a larger and deeper than

usual neural network was required in Kalashnikov et al.

(2018) for the Q-function to deal with the large variety of

objects and to achieve good performance on test objects.

4.5.2. Proper evaluation. To get good generalization, the

entire system, including its hyperparameters, has to be

tuned to optimize for it. This means that when we define

the evaluation protocol, we have to be thoughtful to have

two Markov decision processes (MDPs): one for training

and a separate one for evaluation.

This separation of MDP has to be done based on what

we care to generalize against: if we want a policy that can

grasp new objects, we should have the training MDP with a

different set of objects than the testing MDP, both in simu-

lation and the real setup. If we care about generalizing to

new robot dynamics, we should make sure to define our

training MDP with different dynamics than our testing

MDP.

4.6. Avoiding model exploitation

There have been notable success stories in robotics with

model-based RL approaches that learn a model of the

dynamics and use that model to choose actions (Deisenroth

et al., 2013; Finn and Levine, 2017; Kurutach et al., 2018;

Lenz et al., 2015; Levine et al., 2016; Nagabandi et al.,

2018; Xie et al., 2019; Yang et al., 2020). Here, we use the

term ‘‘model-based’’ to describe algorithms that learn a

model of the dynamics from data, not to refer to the setting

where a model is known a priori. Empirically, these meth-

ods have enjoyed superior sample complexity in compari-

son with model-free approaches (Deisenroth et al., 2013;

Nagabandi et al., 2018; Yang et al., 2020), have scaled to

vision-based tasks (Finn and Levine, 2017; Finn et al.,

2016b; Levine et al., 2016), and demonstrated generaliza-

tion capabilities to many objects and tasks when the model

is trained on large, diverse datasets (Finn and Levine,

2017; Yang et al., 2020). These generalization capabilities

are a natural byproduct of being able to train on off-policy

datasets.

Despite the benefits of model-based RL methods, a pri-

mary, well-known challenge faced by such model-based

RL approaches is model exploitation, i.e., when the model

is imperfect in some parts of the state space, and the opti-

mization over actions finds parts of the state space where

the model is erroneously optimistic. This can result in poor

action selection. Although this challenge is real, we have

found that, in practice, we have multiple tools for mitigat-

ing it.

First, we have found that optimization under the model

is successful when the data distribution consists of particu-

larly broad distributions over actions and states (Finn and

Levine, 2017; Yang et al., 2020). In problem domains

where this is not possible, one effective tool is data aggre-

gation, which interleaves the data collection and model

learning, similar to DAGGER (Ross et al., 2011).

Whenever the model is inaccurate and gets exploited, more

data in the real world is collected to retrain the model.

Another tool is to represent and account for model uncer-

tainty (Deisenroth and Rasmussen, 2011). Acquiring accu-

rate uncertainty estimates when using neural network

Ibarz et al. 711



models is particularly challenging, though there has been

some success on physical robots (Nagabandi et al., 2020).

If we cannot obtain uncertainty estimates, then we can

alternatively model the data distribution that the model was

fit, and constrain the optimization to that distribution. We

have found this approach to be particularly effective when

using models fit locally around a relatively small number

of trajectories (Chebotar et al., 2017b; Levine et al., 2016).

We can achieve a similar effect, but without having to refit

models from scratch, by learning to adapt models to local

contexts from a few transitions (Clavera et al., 2019): this

approach allows us to automatically construct local models

from short windows of experience. These local models

have been demonstrated on a variety of robotic manipula-

tion and locomotion problems.

Even if the learned model is accurate for a single-step

prediction, error can accumulate over the a long-horizon

plan. For example, the predicted and real trajectories can

quickly diverge after a contact event, even if the single-step

model error is small. We found that using multi-step losses

(Finn and Levine, 2017; Yang et al., 2020), shorter horizons

(when applicable) (Nagabandi et al., 2018), and replanning

(Finn and Levine, 2017; Nagabandi et al., 2018) are effec-

tive strategies for limiting the error accumulation, and reco-

vering from model exploitation.

4.7. Robot operation at scale

Recent advances in deep learning have also contributed to

faster compute architectures and the availability of ever-

growing (labeled) datasets (Deng et al., 2009; Garofolo

et al., 1993). In addition, various open-source efforts, such

as those of Paszke et al. (2017) and Abadi et al. (2015),

have contributed to minimizing the cost of entry.

Importantly, progress was enabled also because the time it

took to train deep models and iterate on them became

shorter and shorter. This holds true for robotic learning as

well. The faster training data can be collected and a

hypothesis can be tested, the faster progress will be made.

Despite advances in data efficiency (Section 4.2), deep

RL still requires a fair amount of data, especially if visual

information (images) is part of the observation. The major-

ity of robot learning experiments to date were conducted

on a single robot closely monitored by a single human

operator. This one-to-one relation between robot and opera-

tor has been a tedious but effective way to ensure continu-

ous and safe operation. The human can reset the scene,

stop the robot in unsafe situations, and simply restart and

reset the robot on failures. However, to scale up data col-

lection efforts and increase the throughput of evaluation

runs, robots need to run without human supervision. It is

impractical to allocate more operators to a set-up with mul-

tiple robots, or whenever a single robot is meant to run 24/

7, and especially both. In the following, we discuss the par-

ticular challenges that arise in those settings, namely (1)

designing the experimental set-up to maximize throughput,

i.e., the number of episodes/trials per hour, (2) facilitating

continuous operation of the robots, and (3) dealing with

non-stationarity owing to environment changes.

4.7.1. Experiment design. The experimental set-up itself,

i.e., how a particular robot is set up to tackle a specific

task, is an important and often overlooked aspect of a suc-

cessful experiment. Oftentimes the set-up has been care-

fully engineered or the task has been chosen such that the

robot can reset the scene to facilitate unattended and poten-

tially round-the-clock operation. For example, in (Pinto and

Gupta 2016; Levine et al. 2018; Kalashnikov et al. 2018;

Zeng et al. 2018; Cabi et al. 2019; Dasari et al. 2019), the

workspaces are convex, the objects involved allow for safe

interaction, and action-spaces are mostly restricted to top-

down combined with either intrinsic compliance of the

robot itself and/or a wrist mounted force-torque sensor to

detect and stop unsafe motions. Ideally, the experimental

set-up is as unconstrained as possible, but, in practice, is

restricted to create a safe action space for the robot (see

Section 4.11.1).

4.7.2. Facilitating continuous operation. Round-the-clock

operation will stress the robot itself as well as the experi-

mental set-up. Repeated potentially unintended contact of

the robot with objects and environment will wear out any

experimental set-up eventually and needs to be considered

upfront. The challenge for long-running experiments is to

increase the mean time between failure while ensuring that

the data that is being collected is indeed useful for training.

The former requires to understand the root cause for each

intervention and develop failsafe redundancies. We discuss

this challenge more in Section 4.12. Similarly, to ensure

that the collected data is not compromised, adding sanity

checks is recommended along with actually using the data

early to train and retrain models. Despite simply acquiring

more data faster, running experiments around-the-clock

also ensures that robots are exposed to varying amounts of

lighting conditions allowing us to train more robust poli-

cies. However, spot-checking the collected data is important

as we noticed, for example, that the ceiling lights automati-

cally turned off for parts of the night resulting in very dark

images compromising the data.

4.7.3. Non-stationarity owing to environment changes. A

learned policy will fail if environment aspects have signifi-

cantly changed since training. For example, the lighting

conditions may significantly shift at night if windows are

present in the room, and evaluations done at night may

have very different results if no data collection happened at

that time. The underlying dynamics may have shifted sig-

nificantly since training owing to hardware degradation.

Hardware degradation, such as change of battery level,

wear and tear, and hardware failure, are the major causes of

dynamic changes. Traditional learning-based approaches,

which have distinctive training and testing phases,

712 The International Journal of Robotics Research 40(4-5)



assuming stationary distribution between phases, suffer

from hardware degradation or environment changes not

captured in the collection phase. In extreme cases of loco-

motion, a learned policy can stop working after merely a

few weeks owing to significant robot dynamic changes. To

address these challenges, learning algorithms need to adjust

online (Yu et al., 2017), optimize for quick adaptation

(Finn et al., 2017a; Yang et al., 2019), or learn in a lifelong

fashion.

This can also have consequences for evaluation proto-

cols where comparing two learned policies or even the same

one at different times. We recently found that the best pol-

icy learned in Levine et al. (2018) was sensitive to a hard-

ware degradation of the fingers, which caused a consistent

performance drop of 5% in as little as 800 grasps executed

on a single robot. One way to mitigate this is to use proper

A/B testing protocols as described in Tang et al. (2010).

4.8. Asynchronous control: thinking and acting at

the same time

The MDP formulation assumes synchronous execution: the

observed state remains unchanged until the action is

applied. However, on real robotic systems, the execution is

asynchronous. The state of the robot is continuously evol-

ving as the state is measured, transmitted, the action calcu-

lated and applied. Latency measures the delay from when

the observation is measured at the sensor, to when the

action is actually executed at the actuator. This delay is

usually on the order of milliseconds to seconds, depending

on the hardware and the complexity of the policy. The exis-

tence of latency means that the next state of the system

does not directly depend on the measured state, but instead

on the state after a delay of latency after the measurement,

which is not observable. Latency violates the most funda-

mental assumption of MDP (Xiao et al., 2020), and thus

can cause failure to some RL algorithms. For example, we

tested SAC (Haarnoja et al., 2018c) and QT-Opt (Xiao

et al., 2020), two state-of-the-art off-policy algorithms, to

learn walking on a simulated quadruped robot or grasping

objects with an arm, with different latencies. Although both

QT-Opt and SAC can learn efficiently when the latency is

zero, they failed when we increase the latency.

Clearly, we need special treatments to combat the non-

Markovianness introduced by latency. For model-based

methods, the planning component is often computationally

expensive, and incurs additional latency. For example, the

popular sample-based planner, cross-entropy method

(CEM) (De Boer et al., 2005), needs to rollout many trajec-

tories and update the underlying distribution of optimal

action sequences. Even if CEM is parallelized using the lat-

est GPU, planning alone can still take tens of milliseconds.

To accommodate such latency, in Yang et al. (2020), we

plan the optimal action sequence based on a future state,

which is predicted using the learned dynamic model, to

compensate for the latency caused by the planning

algorithm. For model-free methods, one approach is to add

recurrence to the policy network and, in particular, include

the previous actions taken by the policy as part of the state

definition. The recurrent neural network could learn to

extrapolate the observation to when the action is applied,

from the memorized previous observations. Another

approach along the same line, which avoids the additional

cost of training recurrent neural networks, is to augment

the observation space with a window of previous observa-

tions and actions. In practice, we find that the latter is sim-

pler and equally effective (Haarnoja et al., 2018c; Xiao

et al., 2020).

4.9. Setting goals and specifying rewards

A critical component required for any application of RL is

the reward function. In simulation or video game environ-

ments, the reward function is typically easy to specify,

because one has full access to the simulator or game state,

and can determine whether the task was successfully com-

pleted or access the score of the game. In the real world,

however, assigning a score to quantify how well a task was

completed can be a challenging perceptual problem of its

own. In most of our case studies, we sidestep this difficulty

in one of the following ways. (1) Instrumenting the envi-

ronment with additional sensors that provide reward infor-

mation. For example, an inertial measurement unit was

used to measure the angle of the door and the handle to

learn a door-opening task in Chebotar et al. (2017b), or a

motion capture device was used to measure how fast the

quadruped robot walks (Haarnoja et al., 2019). (2) Simple

heuristics such as image subtraction or target joint encoder

values can be valuable in some cases. For example,

Kalashnikov et al. (2018) used the gripper encoder values

and a comparison of images with and without the grasping

in order to determine whether an object was successfully

grasped. (3) Learning a visual prediction model as in Finn

and Levine (2017) avoids the need to define reward func-

tions at training time: instead, the reward is specified at

evaluation time based on a goal image or equivalent repre-

sentation. However, none of these methods necessarily gen-

eralizes to any possible robot task one might wish to solve

using RL.

Learning the reward function itself is a promising ave-

nue for addressing this problem. It can be learned expli-

citly, from demonstrations (Finn et al., 2016a), from human

annotation (Cabi et al., 2019), from human preferences

(Sadigh et al. 2017; Christiano et al. 2017), or from multi-

ple sources of human feedback (B?y?k et al. 2020). In

these examples, reward function learning is typically done

in parallel with the RL process, because new experience

data helps train a better reward function approximation.

However, large amounts of demonstrations or annotations

may be required. The process of learning reward functions

from demonstrations, called inverse RL is an underspeci-

fied problem Ziebart et al. (2008), making it difficult to

scale to image observations, and exploitation of the reward

Ibarz et al. 713



can happen even with in-the-loop reward learning. There

are promising techniques to try to address some of these

problems, including using metalearned priors (Xie et al.

2018) or active queries (Singh et al. 2019), but learning

rewards with minimal human supervision in the general

case remains an unsolved problem.

4.10. Multi-task learning and meta-learning

One promising approach towards enabling robots to learn

tasks efficiently is to leverage previous experience from

other tasks rather than training for a task completely from

scratch. Multi-task learning approaches aim to do exactly

this by learning multiple tasks at once, rather than training

for a single task. Similarly, meta-learning algorithms train

across multiple tasks such that learning a new future task

can be done very efficiently. Although these approaches

have shown considerable promise in enabling robots to

quickly adapt to new object configurations (Duan et al.,

2017), new objects (Finn et al., 2017b; James et al., 2018),

and new terrains or environment conditions (Clavera et al.,

2019; Yu et al., 2019), a number of challenges remain in

order to make them practical for learning across many dif-

ferent robotic control tasks in the real world.

The first challenge is to specify the task collection.

These algorithms assume a collection of training tasks that

are representative of the kinds of tasks that the robot must

generalize or adapt to at test time. However, specifying a

reward function for a single task already presents a major

challenge (Section 4.9), let alone for tens or hundreds of

tasks. Some prior works have proposed solutions to this

problem by deriving goals or skills in an unsupervised

manner (Gregor et al., 2017; Jabri et al., 2019). However,

we have yet to see these approaches show significant suc-

cess in real-world settings.

Another significant challenge lies in the optimization

landscape of multiple tasks. Learning multiple tasks at

once can present a challenge even for supervised learning

problems owing to different tasks being learned at differ-

ent rates (Chen et al., 2018; Schaul et al., 2019) or the

challenges in determining how to resolve conflicting gra-

dient signals between tasks (Sener and Koltun, 2018).

These optimization challenges can be exacerbated in RL

settings, where they are confounded with challenges in

trading off exploration and exploitation. These challenges

are less severe for similar tasks (Duan et al., 2016; Finn

et al., 2017a; Rakelly et al., 2019), but pose a major chal-

lenge for more distinct tasks (Parisotto et al., 2016; Rusu

et al., 2015).

Finally, as we scale learning algorithms towards many

different tasks, all of the existing challenges discussed

above remain and can be even more tricky, including the

need for resetting the environment towards state that are

relevant for the current task 4.12, operating robots at scale

4.7, and handling non-stationarity 4.7.3.

4.11. Safe learning

Safety is critical when we apply RL on real robots.

Although sufficient exploration leads to more efficient

learning, directly exploring in the real world is not always

safe. Repeated falling, self-collisions, jerky actuation, and

collisions with obstacles may damage the robot and its sur-

roundings, which will require costly repairs and manual

interventions (Section 4.12).

4.11.1. Designing safe action spaces. One simple way to

avoid unsafe behaviors is to restrict the action space such

that any action that a learned policy can take is safe. This

is usually very restrictive and cannot be applied to all appli-

cations. However, there are many cases, particularly in

semi-static environments and tasks, such as grasping and

manipulation, where this is the right approach. Grasping

objects in a bin is a very common task in logistics. In these

settings, safety can typically be enforced by restricting the

work space. For example, in Levine et al. (2018) and

Kalashnikov et al. (2018), all actions are selected through

sampling, and unsafe samples are rejected. This allows us

to perform safety checks or add constraints to the action

space. By using a geometric model of the robot and the

world, we can reject actions that are outside the 3D volume

above the bin, and reject actions that violate kinematic or

geometric constraints. We can also enforce constraints on

the velocity of the arm. Although this allows us to handle

safety for parts of the robot and environment that can be

modeled, it does not deal with anything that is unmodeled,

such as objects in the scene that we might want to grasp or

push aside before grasping. We can mitigate this issue by

using a force-torque sensor at the end-effector to detect and

stop motion when an impact occurs. From the point of

view of the RL agent, this action appears to have a trun-

cated effect. This combination of strategies can provide for

a workable level of safety in a simple and effective way for

tasks that are quasi-static in nature.

4.11.2. Smooth actions. Typically, exploration strategies

are realized by adding random noise to the actions.

Uncorrelated random noise injected in the action space for

exploration can cause jerky motions, which may damage

the gearbox and the actuators, and thus is unsafe to execute

on the robot. Options for smoothing out jerky actions dur-

ing exploration include: reward shaping by penalizing jer-

kiness of the motion, mimicking smooth reference

trajectories (Peng et al., 2018a), learning an additive feed-

back together with a trajectory generator (Iscen et al.,

2018), sampling temporal coherent noise (Haarnoja et al.,

2019; Yang et al., 2020), or smoothing the action sequence

with low-pass filters. All these techniques work well,

although additional manual tuning or user-specified data

may be required.

In the locomotion case study (Section 3.3), because the

learning algorithm can freely explore the policy space, the

714 The International Journal of Robotics Research 40(4-5)



converged gait may not be periodic, may be jerky or may

use too much energy, which can damage the robot and its

surroundings. They usually do not resemble the gaits of

animals that we are familiar with in nature. Although it is

possible to mitigate these problems by shaping the reward

function, we find that a better alternative that requires less

tuning is to incorporate a periodic and smooth trajectory

generator into the learning process. We develop a novel

neural network architecture, policies modulated trajectory

generator (PMTG) (Iscen et al., 2018), which can effec-

tively incorporate prior knowledge of locomotion and regu-

larize the learned gait. PMTG subdivides the controller

into an open-loop and a feedback component. The open-

loop trajectory generator creates smooth and periodic leg

motion, whereas the feedback policy, represented by a

neural network, can be learned to modulate this trajectory

generator, to change walking speed, direction, and style. As

a result, the PMTG policies are safe to be deployed or

directly learned on the real robot.

4.11.3. Recognizing unsafe situations. It is crucial to

recognize that unsafe situations is about to happen, so that

a recovering policy can be deployed to keep the robot safe,

or to shutdown the robot completely. Heuristic-based

approaches can be designed to recognize these unsafe

states or actions by checking whether the action will

cause collision, or whether the power and the torque exceed

the limit. Performing these rule-based safety checks often

require careful tuning and a rich set of onboard sensors.

Furthermore, we can also employ learning to recognize

unsafe situations. These approaches can use ensemble

models to estimate uncertainty (Deisenroth and

Rasmussen, 2011; Eysenbach et al., 2018) of certain pre-

dictions, which can be a good indicator whether any unsafe

behavior may happen, or can directly learn the probability

of future unsafe behaviors from experience (Gandhi et al.

2017; Srinivasan et al. 2020). Once a precarious situation

is recognized, a recovering policy can be deployed to move

the robot back to a safe state. The task policy, the recover-

ing policy and the classifier for safety can all be learned

simultaneously (Eysenbach et al., 2018; Thananjeyan et al.,

2020). For example, in a locomotion task, when the robot

is in a balance state, the task policy (walking) is executed

and updated. When the robot is about to fall, which is pre-

dicted by the learned Q-function, the recovering policy

(stand up) takes over. The data collected in this mode is

used to update the recovering policy. We showed that learn-

ing them simultaneously can dramatically reduce the num-

ber of falls during training.

4.11.4. Constraining learned policies. One obvious way to

avoid unsafe behaviors is to penalize unsafe actions each

time they are taken. However, this can be hard in practice,

as careful tuning is needed for the weights of this penalty

term. A more effective alternative is to formulate safe RL

as a constrained Markov decision process (C-MDP)

(Altman, 1999). For example, TRPO (Schulman et al.,

2015) ensures a stable learning using a Kullback–Leibler

(KL) divergence constraint. More recently, Achiam et al.

(2017) and Bohez et al. (2019) have also applied constraint-

based optimization to model safety as a set of hard con-

straints. In our locomotion projects, we formulated a C-

MDP that has inequality constraints on the roll and the

pitch of the robot base, which constitutes a rough measure

of balance. If the state of the robot stays within the con-

straints throughout the entire training process, the robot is

guaranteed to stay upright. This minimizes the chance of

falling when the robot is learning to walk. The constrained

formulation usually performs better because as long as the

constraints are met, no gradients is generated, and thus no

interference can happen between the safety constraints and

the reward objective. However, too stringent constraints will

limit exploration and can lead to slow learning.

4.11.5. Robustness to unseen observations. Last, but not

least, even if the training process is safe, the final learned

policy can execute unexpected, and potentially unsafe,

actions when encountering unseen observations. To

improve the generalization of the policy to unseen situa-

tions, we adopted a robust control approach. We use

domain randomization, which samples different physical

parameters, or add perturbation forces, either randomly or

adversarially (Pinto et al., 2017), to the robot during train-

ing, to force it to learn to react under a wide variety of

observations. Before deploying the policy on the robots, we

also perform extensive evaluations in simulation about the

safety and the performance of the controller on untrained

scenarios. Occasionally, the robot, which is trained to be

robust and passed all the safety checks in simulation, can

still misbehave in the real world. In these rare situations,

the model-based or heuristic-based safety checks, such as

self-collision detection, power/torque limit, or acceleration

threshold, will trigger and shut down the robot.

4.12. Robot persistence

We use the term robot persistence to refer to the capability

of the robot to persist in collecting data and training with

minimal human intervention. Persistence is crucial for

larger-scale robotic learning, because the effectiveness of

modern machine learning models (i.e., deep neural net-

works) is critically dependent on the quantity and diversity

of training data, and persistence is required to collect large

training sets. We can divide the problem of robot persis-

tence into two main categories: (1) self-persistence, the

robot must avoid damaging itself during training; (2) task

persistence, the robot must act so that it can continue to

perform the task. Robot persistence is critical for enabling

autonomous data collection safely and at scale.

4.12.1 Self-persistence. We define self-persistence as the

ability for the robot to keep its full range of motion while

Ibarz et al. 715



performing a task. If the robot were to collide with itself,

or the environment, and end up damaging itself, it may end

up losing certain abilities, requiring human intervention. In

Section 4.11, we provide a few strategies to improve self-

persistence.

4.12.2 Task persistence. Task persistence is the capability

of the robotic set-up to accomplish a range of tasks, repeat-

edly, in the case of grasping, hundreds of thousands of

times to learn the task. Being able to retry a task is tightly

coupled with the environment itself and is, to this day, still

an unsolved problem for a large range of tasks.

Challenges can occur where the robot work space is lim-

ited, and thus objects required to accomplish a task may

accidentally be thrown out of reach. In this case, we need

to find exploration strategies that avoid ending up in such

states, in a very limited data regime, to avoid human inter-

ventions that are needed every time such an unrecoverable

state is encountered. In high-dimensional states, such as

images, this becomes a challenging problem as even defin-

ing those states becomes a challenge on its own: how do

we know from an image that an object has fallen off the

bin?

Another class of challenges that we also put in this cate-

gory is what is often called ‘‘environment reset.’’ In many

cases, once the task is accomplished, changes in the envi-

ronment may need to happen before another trial can be

done. This is easy to do in simulation: just reset the state of

the environment. In the real world, this can often be much

harder to accomplish, as resetting the environment is a

sequence of robotic tasks, which may be as hard or harder

than the task we are trying to learn itself. An example is

learning to screw the cap of a bottle again, we may have to

unscrew it to be able to try to screw it again. Pouring or

assembly tasks are also examples where resetting the envi-

ronment may be as challenging or may require many steps

to accomplish. Automating the whole process of environ-

ment reset is required if we want the robot to persist to

learn the task. It becomes a challenge of identifying the

right set of sub-tasks whose reset action we already learned

how to do with a robot.

On occasion, some tasks are physically irreversible, such

as welding two pieces of metal, cutting food with a knife,

cutting paper with scissors, or writing with a marker. In

those cases, other robots may have to bring new objects to

the robot trying to learn those tasks, which may be much

harder than trying to accomplish the task itself.

Solving task persistence remains mostly an open prob-

lem. Although guided policy search methods that can han-

dle random initial states have been developed (Montgomery

et al., 2017; Montgomery and Levine, 2016), they still rely

on clustering the initial states into a discrete set of ‘‘similar’’

states, which may be impractical in some cases, such as the

diverse grasping task discussed in Section 3.2 and the

diverse pushing task in Section 3.1.3, where the ‘‘state’’

includes the positions and identities of all objects in the

scene. Previous work such as that of Pinto and Gupta

(2016) and Finn and Levine (2017) limited the task and

action space to be within a bin, which helped keep objects

in it by having raised side walls as well as tackled tasks that

required a simple reset: just open the gripper above the bin

and bring it back to a home position which can easily be

scripted. Because task persistence was resolved to some

extent, some of those work managed to collect millions of

trials (Kalashnikov et al., 2018; Levine et al., 2018).

Unfortunately, many tasks do not have these nice proper-

ties. For example, Chebotar et al. (2017a) leveraged a

human to perform the reset by bringing the puck back to a

position where the hockey stick could hit it again. Haarnoja

et al. (2019) had to bring the legged robot back to its initial

starting position every time the robot reached the end of the

limited 5 m workspace. In both cases, task persistence was

not achieved and humans were performing the reset proce-

dure. This makes data collection hard to scale because (1) it

was very time consuming for a human and (2) in both

cases, they stopped because they started to feel back pain

while performing the environment reset. As such, only a

few hours of data, and less than 1,000 trials were

performed.

More recently, work such as that of Eysenbach et al.

(2018) tried to tackle this issue of task persistence by inte-

grating environment reset as part of the learning procedure,

in a task-agnostic way. However, this work only explored

tasks which have a unique starting point, that can be

reached from most states. This strategy is not always possi-

ble such as in self-driving cars, where going backward to

come back to the starting point is generally not safe.

5. Discussion and conclusions

In this article, we discussed how deep RL algorithms can

be approached in a robotics context. We provided a brief

review of recent work on this topic, a more in-depth discus-

sion focusing on a set of case studies, and a discussion of

the major challenges in deep RL as it pertains to real-world

robotic control. Our aim was to present the reader with a

high-level summary of the capabilities of current deep RL

methods in the robotics domain, discuss which issues make

deployment of deep RL methods difficult, and provide a

perspective on how some of those difficulties can be miti-

gated or avoided.

Although deep RL is often regarded as being too ineffi-

cient for real-world learning scenarios, described in Section

4.2, we discuss how, in fact, deep RL methods have been

applied successfully on tasks ranging from quadrupedal

walking, to grasping novel objects, to learning varied and

complex manipulation skills. These case studies illustrate

that deep RL can, in fact, be used to learn directly in the

real wold, can learn to utilize raw sensory modalities such

as camera images, and can learn tasks that present a sub-

stantial physical challenge, such as walking and dexterous

manipulation. Most importantly, these case studies illustrate

716 The International Journal of Robotics Research 40(4-5)



that policies trained with deep RL can generalize effec-

tively, such as in the case of the robotic grasping experi-

ments discussed in Section 3.2.

However, utilizing deep RL does present a number of

significant challenges, and though these challenges do not

preclude current applications of deep RL in robotics, they

do limit its impact. Some of these challenges have partial or

complete current solutions, whereas some do not. Although

current deep RL methods are not as inefficient as often

believed, provided that an appropriate algorithm is used and

the hyperparameters are chosen correctly, efficiency and

stability remain major challenges, and additional research

on RL algorithm design should focus on further improving

both. The use of simulation can further reduce challenges

owing to sample efficiency, though simulation alone does

not solve all issues with robotic learning. Exploration can

pose a major challenge in robotic RL, but we outline a vari-

ety of ways in which exploration challenges can be side-

stepped in practical robotic control problems, from utilizing

demonstrations to baseline hand-engineered controllers. Of

course, not all exploration challenges can be overcome in

this way, but ‘‘solving’’ the difficult RL exploration problem

should not be a prerequisite for effective application of deep

RL in robotics. Generalization presents a challenge for deep

RL, but in contrast to arguments made in many prior works,

we do not believe that this issue is any more pronounced

than in any other machine learning field, and the availabil-

ity of large and diverse data can enable RL policies to gen-

eralize in the same way as it enables generalization for

supervised models. Indeed, deep RL is likely to have an

advantage here: if generalization is limited primarily by

data quantity and diversity, automatically labeled robotic

experience can likely be collected in much larger amounts

than hand-labeled data.

Beyond the algorithmic challenges in deep RL, robotic

deep RL also presents a number of challenges that are

unique to the robotics setting: learning complex skills

requires considerable data collection by the robots, which

requires the ability to keep the robots operational with min-

imal human intervention. Conducting training without per-

sistent human oversight is itself a significant engineering

challenges, and requires certain best practices, as we dis-

cuss in Section 4.7. This last challenge is tightly connected

to designing persistent robots, as we desire for the robot to

be an autonomous agent in the real world, there are many

challenges that are often overlooked in simulated environ-

ments which we discuss in Section 4.12. As robots exist in

the real world, they must also obey real-time constraints,

which means that policies must be evaluated in parallel and

with a limited time budget alongside the motion of the

robot: this presents challenges in the classically synchro-

nous MDP model (Section 4.8). Finally, and importantly,

real-world RL requires to define a reward function.

Although it is common in RL research to assume that the

reward function or reward signal is an external signal that

is provided by the environment, in robotic learning this

function must itself be programmed, or otherwise learned

by the robot. As we expand the number of tasks we want

our robots to accomplish via techniques such as multi-task

or meta-learning discussed in Section 4.10, the efforts in

defining those reward functions will continue to increase.

This can serve as a major barrier to deployment of RL

algorithms in practice, though it can be mitigated with a

variety of automatic and semi-automatic reward acquisition

methods, as discussed in Section 4.9.

We believe that these challenges, though addressed in

part over the past few years, offer a fruitful range of topics

for future research. Addressing them will bring us closer to

a future where RL can enable any robot to learn any task.

This would lead to an explosive growth in the capabilities

of autonomous robots: when the capabilities of robots are

limited primarily by the amount of robot time available to

learn skills, rather than the amount of engineering time

necessary to program them, robots will be able to acquire

large skill repertoires. A suitable goal for robotic deep RL

research would be to make robotic RL as natural and scal-

able as the learning performed by humans and animals,

where any behavior can be acquired without manual scaf-

folding or instrumentation, provided that the task is speci-

fied precisely, is physically possible, and does not pose an

unreasonable exploration challenge.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

ORCID iDs

Julian Ibarz https://orcid.org/0000-0002-9920-6978

Mrinal Kalakrishnan https://orcid.org/0000-0003-4292-9857

References

Abadi M, Agarwal A, Barham P, et al. (2015) TensorFlow: Large-

scale machine learning on heterogeneous systems. http://ten-

sorflow.org/.

Achiam J, Held D, Tamar A and Abbeel P (2017) Constrained

policy optimization. In: International Conference on Machine

Learning.

Agarwal R, Schuurmans D and Norouzi M (2020) An optimistic

perspective on offline reinforcement learning. In: International

Conference on Machine Learning.

Altman E (1999) Constrained Markov Decision Processes, Vol. 7.

Boca Raton, FL: CRC Press.

Andrychowicz M, Wolski F, Ray A, et al. (2017) Hindsight expe-

rience replay. In: Advances in Neural Information Processing

Systems, pp. 5048–5058.

Bellemare M, Srinivasan S, Ostrovski G, Schaul T, Saxton D and

Munos R (2016) Unifying count-based exploration and intrin-

sic motivation. In: Advances in Neural Information Processing

Systems, pp. 1471–1479.

Ibarz et al. 717

https://orcid.org/0000-0002-9920-6978
https://orcid.org/0000-0003-4292-9857
http://tensorflow.org/
http://tensorflow.org/


Bohez S, Abdolmaleki A, Neunert M, Buchli J, Heess N and Had-

sell R (2019) Value constrained model-free continuous control.

arXiv preprint arXiv:1902.04623.

Bojarski M, Del Testa D, Dworakowski D, et al. (2016) End to

end learning for self-driving cars. arXiv preprint

arXiv:1604.07316.

Bousmalis K, Irpan A, Wohlhart P, et al. (2018) Using simulation

and domain adaptation to improve efficiency of deep robotic

grasping. In: International Conference on Robotics and Auto-

mation. IEEE, pp. 4243–4250.

Bousmalis K, Silberman N, Dohan D, Erhan D and Krishnan D

(2017) Unsupervised pixel-level domain adaptation with gen-

erative adversarial networks. In: Conference on Computer

Vision and Pattern Recognition.

Brockman G, Cheung V, Pettersson L, et al. (2016) OpenAI Gym.

arXiv preprint arXiv:1606.01540.

Burda Y, Edwards H, Storkey A and Klimov O (2019) Explora-

tion by random network distillation. In: International Confer-

ence on Learning Representations.

Byravan A, Leeb F, Meier F and Fox D (2018) SE3-Pose-Nets:

Structured deep dynamics models for visuomotor control. In:

International Conference on Robotics and Automation.

Cabi S, Colmenarejo SG, Novikov A, et al. (2019) A framework

for data-driven robotics. arXiv preprint arXiv:1909.12200.

Chebotar Y, Hausman K, Zhang M, Sukhatme G, Schaal S and

Levine S (2017a) Combining model-based and model-free

updates for trajectory-centric reinforcement learning. In: Inter-

national Conference on Machine Learning, pp. 703–711.

Chebotar Y, Kalakrishnan M, Yahya A, Li A, Schaal S and Levine

S (2017b) Path integral guided policy search. In: International

Conference on Robotics and Automation. IEEE, pp. 3381–

3388.

Chen Z, Badrinarayanan V, Lee CY and Rabinovich A (2018)

GradNorm: Gradient normalization for adaptive loss balancing

in deep multitask networks. In: International Conference on

Machine Learning.

Chiang HTL, Faust A, Fiser M and Francis A (2019) Learning

navigation behaviors end-to-end with AutoRL. IEEE Robotics

and Automation Letters 4(2): 2007–2014.

Clavera I, Nagabandi A, Liu S, et al. (2019) Learning to adapt in

dynamic, real-world environments through meta-reinforcement

learning. In: International Conference on Learning

Representations.

Clegg A, Yu W, Tan J, Liu CK and Turk G (2018) Learning to

dress: Synthesizing human dressing motion via deep reinforce-

ment learning. In: SIGGRAPH Asia 2018 Technical Papers.

New York: ACM Press.

Coumans E and Bai Y (2016) PyBullet, a Python module for phy-

sics simulation, games, robotics and machine learning. http://

pybullet.org/.

Daniel C, Neumann G, Kroemer O and Peters J (2013) Learning

sequential motor tasks. In: International Conference on

Robotics and Automation. IEEE.

De A (2017) Modular Hopping and Running via Parallel Compo-

sition. PhD Thesis, University of Pennsylvania.

De Boer PT, Kroese DP, Mannor S and Rubinstein RY (2005) A

tutorial on the cross-entropy method. Annals of Operations

Research 134(1): 19–67.

Deisenroth M and Rasmussen C (2011) Pilco: A model-based and

data-efficient approach to policy search. In: International Con-

ference on Machine Learning. Omnipress, pp. 465–472.

Deisenroth MP, Neumann G and Peters J (2013) A survey on pol-

icy search for robotics. In: Foundations and Trends in

Robotics, Vol. 2. Now Publishers, Inc., pp. 1–142.

Deng J, Dong W, Socher R, Li LJ, Li K and Fei-Fei L (2009) Ima-

genet: A large-scale hierarchical image database. In: Confer-

ence on Computer Vision and Pattern Recognition. IEEE, pp.

248–255.

Devlin J, Chang MW, Lee K and Toutanova K (2019) BERT: Pre-

training of deep bidirectional transformers for language under-

standing. In: NAACL-HLT.

Draeger A, Engell S and Ranke H (1995) Model predictive con-

trol using neural networks. Control Systems Magazine 15(5):

61–66.

Duan Y, Andrychowicz M, Stadie B, et al. (2017) One-shot imita-

tion learning. In: Advances in Neural Information Processing

Systems, pp. 1087–1098.

Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever I and Abbeel

P (2016) RL2: Fast reinforcement learning via slow reinforce-

ment learning. arXiv preprint arXiv:1611.02779.

Ebert F, Finn C, Dasari S, Xie A, Lee A and Levine S (2018)

Visual foresight: Model-based deep reinforcement learning for

vision-based robotic control. arXiv preprint arXiv:1812.00568.

Eysenbach B, Gu S, Ibarz J and Levine S (2018) Leave no trace:

Learning to reset for safe and autonomous reinforcement

learning. In: International Conference on Learning

Representations.

Finn C, Abbeel P and Levine S (2017a) Model-agnostic meta-

learning for fast adaptation of deep networks. In: International

Conference on Machine Learning.

Finn C and Levine S (2017) Deep visual foresight for planning

robot motion. In: International Conference on Robotics and

Automation. IEEE.

Finn C, Levine S and Abbeel P (2016a) Guided cost learning:

Deep inverse optimal control via policy optimization. In: Inter-

national Conference on Machine Learning, pp. 49–58.

Finn C, Tan XY, Duan Y, Darrell T, Levine S and Abbeel P

(2016b) Deep Spatial Autoencoders for Visuomotor Learning.

In: International Conference on Robotics and Automation.

IEEE, pp. 512–519.

Finn C, Yu T, Zhang T, Abbeel P and Levine S (2017b) One-shot

visual imitation learning via meta-learning. Proceedings of

Machine Learning Research 78: 357–368.

Fox R, Pakman A and Tishby N (2016) Taming the noise in rein-

forcement learning via soft updates. In: Conference on Uncer-

tainty in Artificial Intelligence. AUAI Press.

Fu J, Co-Reyes J and Levine S (2017) Ex2: Exploration with

exemplar models for deep reinforcement learning. In:

Advances in Neural Information Processing Systems, pp.

2577–2587.

Fujimoto S, Meger D and Precup D (2019) Off-policy deep rein-

forcement learning without exploration. In: International Con-

ference on Machine Learning.

Fujimoto S, van Hoof H and Meger D (2018) Addressing function

approximation error in actor–critic methods. In: International

Conference on Machine Learning.

Garofolo JS, Lamel LF, Fisher WM, Fiscus JG and Pallett DS

(1993) DARPA TIMIT acoustic–phonetic continous speech

corpus CD-ROM. NIST speech disc 1-1.1. NASA STI/Recon

Technical Report 93.

Ghadirzadeh A, Maki A, Kragic D and Björkman M (2017) Deep

predictive policy training using reinforcement learning. In:

718 The International Journal of Robotics Research 40(4-5)

http://pybullet.org/
http://pybullet.org/


International Conference on Intelligent Robots and Systems.

IEEE, pp. 2351–2358.

Goodfellow I, Pouget-Abadie J, Mirza M, et al. (2014) Generative

adversarial nets. In: Advances in Neural Information Process-

ing Systems, pp. 2672–2680.

Gregor K, Rezende DJ and Wierstra D (2017) Variational intrinsic

control. In: International Conference on Learning Representa-

tions, Workshop Track Proceedings.

Gu S, Holly E, Lillicrap T and Levine S (2017) Deep reinforce-

ment learning for robotic manipulation with asynchronous off-

policy updates. In: International Conference on Robotics and

Automation. IEEE, pp. 3389–3396.

Gu S, Lillicrap T, Sutskever I and Levine S (2016) Continuous

deep Q-learning with model-based acceleration. In: Interna-

tional Conference on Machine Learning, pp. 2829–2838.

Ha S, Kim J and Yamane K (2018) Automated deep reinforcement

learning environment for hardware of a modular legged robot.

In: International Conference on Ubiquitous Robots. IEEE.

Haarnoja T, Ha S, Zhou A, Tan J, Tucker G and Levine S (2019)

Learning to walk via deep reinforcement learning. In:

Robotics: Science and Systems.

Haarnoja T, Pong V, Zhou A, Dalal M, Abbeel P and Levine S

(2018a) Composable deep reinforcement learning for robotic

manipulation. In: International Conference on Robotics and

Automation. IEEE.

Haarnoja T, Tang H, Abbeel P and Levine S (2017) Reinforce-

ment learning with deep energy-based policies. In: Interna-

tional Conference on Machine Learning, pp. 1352–1361.

Haarnoja T, Zhou A, Abbeel P and Levine S (2018b) Soft actor–

critic: Off-policy maximum entropy deep reinforcement learn-

ing with a stochastic actor. In: International Conference on

Machine Learning.

Haarnoja T, Zhou A, Hartikainen K, et al. (2018c) Soft actor–critic

algorithms and applications. arXiv preprint arXiv:1812.05905.

Hämäläinen P, Rajamäki J and Liu CK (2015) Online control of

simulated humanoids using particle belief propagation. ACM

Transactions on Graphics 34(4): 81.

Hausman K, Chebotar Y, Kroemer O, Sukhatme GS and Schaal S

(2017) Regrasping using tactile perception and supervised pol-

icy learning. In: AAAI Symposium on Interactive Multi-Sensory

Object Perception for Embodied Agents.

Heess N, Sriram S, Lemmon J, et al. (2017) Emergence of loco-

motion behaviours in rich environments. arXiv preprint

arXiv:1707.02286.

Hester T, Vecerk M, Pietquin O, et al. (2018) Deep Q-learning

from demonstrations. In: Conference on Artificial Intelligence.

Hwangbo J, Lee J, Dosovitskiy A, et al. (2019) Learning agile and

dynamic motor skills for legged robots. Science Robotics 4:

26.

Ijspeert A, Nakanishi J and Schaal S (2002) Movement imita-

tion with nonlinear dynamical systems in humanoid robots.

In: International Conference on Robotics and Automation.

IEEE.

Irpan A (2018) Deep reinforcement learning doesn’t work yet.

https://www.alexirpan.com/2018/02/14/rl-hard.html.

Iscen A, Caluwaerts K, Tan J, et al. (2018) Policies modulating tra-

jectory generators. In: Conference on Robot Learning.

Jabri A, Hsu K, Gupta A, Eysenbach B, Levine S and Finn C

(2019) Unsupervised curricula for visual meta-reinforcement

learning. In: Advances in Neural Information Processing Sys-

tems, pp. 10519–10530.

Jain D, Li A, Singhal S, Rajeswaran A, Kumar V and Todorov E

(2019) Learning deep visuomotor policies for dexterous hand

manipulation. In: International Conference on Robotics and

Automation. IEEE, pp. 3636–3643.

James S, Bloesch M and Davison AJ (2018) Task-embedded con-

trol networks for few-shot imitation learning. In: Conference

on Robot Learning.

James S, Davison AJ and Johns E (2017) Transferring end-to-end

visuomotor control from simulation to real world for a multi-

stage task. In: Conference on Robot Learning.

James S, Wohlhart P, Kalakrishnan M, et al. (2019) Sim-to-real

via sim-to-sim: Data-efficient robotic grasping via

randomized-to-canonical adaptation networks. In: Conference

on Computer Vision and Pattern Recognition.

Johannink T, Bahl S, Nair A, et al. (2019) Residual reinforcement

learning for robot control. In: International Conference on

Robotics and Automation. IEEE.

Kakade SM (2002) A natural policy gradient. In: Advances in

Neural Information Processing Systems, pp. 1531–1538.

Kalashnikov D, Irpan A, Pastor P, et al. (2018) Scalable deep rein-

forcement learning for vision-based robotic manipulation. In:

Conference on Robot Learning, Proceedings of Machine

Learning Research.

Khadka S, Majumdar S, Nassar T, et al. (2019) Collaborative evo-

lutionary reinforcement learning. In: International Conference

on Machine Learning.

Kober J, Bagnell JA and Peters J (2013) Reinforcement learning

in robotics: A survey. The International Journal of Robotics

Research 32(11): 1238–1274.

Kohl N and Stone P (2004) Policy gradient reinforcement learning

for fast quadrupedal locomotion. In: International Conference

on Robotics and Automation. IEEE.

Konidaris G, Kuindersma S, Grupen R and Barto A (2012)

Robot learning from demonstration by constructing skill

trees. The International Journal of Robotics Research 31(3):

360–375.

Kroemer O, Niekum S and Konidaris G (2019) A review of robot

learning for manipulation: Challenges, representations, and

algorithms. CoRR abs/1907.03146.

Kumar A, Fu J, Soh M, Tucker G and Levine S (2019) Stabilizing

off-policy Q-learning via bootstrapping error reduction. In:

Advances in Neural Information Processing Systems, Vol. 32.

Curran Associates, Inc.

Kurutach T, Clavera I, Duan Y, Tamar A and Abbeel P (2018)

Model-ensemble trust-region policy optimization. In: Interna-

tional Conference on Learning Representations.

Kuznetsova A, Rom H, Alldrin N, et al. (2020) The open images

dataset V4: Unified image classification, object detection, and

visual relationship detection at scale. International Journal of

Computer Vision 128(7): 1956–1981.

Lee J, Hwangbo J, Wellhausen L, Koltun V and Hutter M (2020)

Learning quadrupedal locomotion over challenging terrain.

Science Robotics 5(47): eabc5986.

Lee MA, Zhu Y, Srinivasan K, et al. (2019) Making sense of

vision and touch: Self-supervised learning of multimodal

representations for contact-rich tasks. In: International Confer-

ence on Robotics and Automation. IEEE.

Ibarz et al. 719

https://www.alexirpan.com/2018/02/14/rl-hard.html


Lenz I, Knepper RA and Saxena A (2015) DeepMPC: Learning

deep latent features for model predictive control. In: Robotics:

Science and Systems, Rome, Italy.

Levine S and Abbeel P (2014) Learning neural network policies with

guided policy search under unknown dynamics. In: Advances in

Neural Information Processing Systems, pp. 1071–1079.

Levine S, Finn C, Darrell T and Abbeel P (2016) End-to-end

training of deep visuomotor policies. The Journal of Machine

Learning Research 17(1): 1334–1373.

Levine S and Koltun V (2013) Guided policy search. In: Interna-

tional Conference on Machine Learning.

Levine S, Pastor P, Krizhevsky A, Ibarz J and Quillen D (2018)

Learning hand–eye coordination for robotic grasping with

deep learning and large-scale data collection. The Interna-

tional Journal of Robotics Research 37(4–5): 421–436.

Levine S, Wagener N and Abbeel P (2015) Learning contact-rich

manipulation skills with guided policy search. In: International

Conference on Robotics and Automation.

Lillicrap TP, Hunt JJ, Pritzel A, et al. (2015) Continuous control

with deep reinforcement learning. arXiv preprint

arXiv:1509.02971.

Mahajan D, Girshick R, Ramanathan V, et al. (2018) Exploring

the limits of weakly supervised pretraining. In: European Con-

ference on Computer Vision.

Mahler J, Matl M, Liu X, Li A, Gealy D and Goldberg K (2018)

Dex-Net 3.0: Computing robust vacuum suction grasp

targets in point clouds using a new analytic model and deep

learning. In: International Conference on Robotics and

Automation.

Mania H, Guy A and Recht B (2018) Simple random search of

static linear policies is competitive for reinforcement learning.

In: Advances in Neural Information Processing Systems.

Manschitz S, Kober J, Gienger M and Peters J (2014) Learning to

sequence movement primitives from demonstrations. In: Inter-

national Conference on Intelligent Robots and Systems.

Mnih V, Kavukcuoglu K, Silver D, et al. (2013) Playing Atari with

deep reinforcement learning. In: Advances in Neural Informa-

tion Processing Systems, Deep Learning Workshop.

Montgomery W, Ajay A, Finn C, Abbeel P and Levine S (2017)

Reset-free guided policy search: Efficient deep reinforcement

learning with stochastic initial states. In: International Confer-

ence on Robotics and Automation. IEEE, pp. 3373–3380.

Montgomery WH and Levine S (2016) Guided policy search via

approximate mirror descent. In: Advances in Neural Informa-

tion Processing Systems, pp. 4008–4016.

Morrison D, Corke P and Leitner J (2018a) Closing the loop for

robotic grasping: A real-time, generative grasp synthesis

approach. In: Robotics: Science and Systems.

Morrison D, Tow AW, McTaggart M, et al. (2018b) Cartman: The

low-cost Cartesian Manipulator that won the Amazon Robotics

Challenge. In: International Conference on Robotics and Auto-

mation. IEEE.

Nagabandi A, Konolige K, Levine S and Kumar V (2020) Deep

dynamics models for learning dexterous manipulation. In:

Conference on Robot Learning.

Nagabandi A, Yang G, Asmar T, et al. (2018) Learning image-

conditioned dynamics models for control of underactuated

legged millirobots. In: International Conference on Intelligent

Robots and Systems. IEEE, pp. 4606–4613.

Nair A, McGrew B, Andrychowicz M, Zaremba W and Abbeel P

(2018) Overcoming exploration in reinforcement learning with

demonstrations. In: International Conference on Robotics and

Automation. IEEE, pp. 6292–6299.

Osband I, Blundell C, Pritzel A and Van Roy B (2016) Deep

exploration via bootstrapped DQN. In: Advances in Neural

Information Processing Systems, pp. 4026–4034.

Parisotto E, Ba J and Salakhutdinov R (2016) Actor-Mimic: Deep

multitask and transfer reinforcement learning. CoRR .

Paszke A, Gross S, Chintala S, et al. (2017) Automatic differentia-

tion in PyTorch. In: Advances in Neural Information Process-

ing Systems Workshop on Autodiff.

Pathak D, Agrawal P, Efros AA and Darrell T (2017) Curiosity-

driven exploration by self-supervised prediction. In: Confer-

ence on Computer Vision and Pattern Recognition Workshops.

IEEE, pp. 16–17.

Peng XB, Abbeel P, Levine S, van de and Panne M (2018a) Deep-

Mimic: Example-guided deep reinforcement learning of

physics-based character skills. ACM Transactions on Graphics

37(4): 143.

Peng XB, Andrychowicz M, Zaremba W and Abbeel P (2018b)

Sim-to-real transfer of robotic control with dynamics randomi-

zation. In: International Conference on Robotics and Automa-

tion. IEEE.

Peng XB, Kumar A, Zhang G and Levine S (2019) Advantage-

weighted regression: Simple and scalable off-policy reinforce-

ment learning. arXiv preprint arXiv:1910.00177.

Peters J, Mülling K and Altün Y (2010) Relative entropy policy

search. In: AAAI Conference on Artificial Intelligence.

Peters J and Schaal S (2006) Policy gradient methods for robotics.

In: International Conference on Intelligent Robots and Sys-

tems. IEEE, pp. 2219–2225.

Peters J and Schaal S (2008) Reinforcement learning of motor

skills with policy gradients. Neural Networks 21(4): 682–697.

Pinto L, Davidson J, Sukthankar R and Gupta A (2017) Robust

adversarial reinforcement learning. In: International Confer-

ence on Machine Learning.

Pinto L and Gupta A (2016) Supersizing self-supervision: Learn-

ing to grasp from 50K tries and 700 robot hours. In: Interna-

tional Conference on Robotics and Automation. IEEE.

Raibert MH (1986) Legged Robots That Balance. Cambridge,

MA: MIT Press.

Rakelly K, Zhou A, Finn C, Levine S and Quillen D (2019) Effi-

cient off-policy meta-reinforcement learning via probabilistic

context variables. In: International Conference on Machine

Learning.

Rao K, Harris C, Irpan A, Levine S, Ibarz J and Khansari M

(2020) RL-CycleGAN: Reinforcement learning aware simula-

tion-to-real. In: Conference on Computer Vision and Pattern

Recognition.

Rawlik K, Toussaint M and Vijayakumar S (2013) On stochastic

optimal control and reinforcement learning by approximate

inference. In: International Joint Conference on Artificial

Intelligence.

Riedmiller M, Hafner R, Lampe T, et al. (2018) Learning by play-

ing solving sparse reward tasks from scratch. In: International

Conference on Machine Learning.

Ross S, Gordon G and Bagnell D (2011) A reduction of imitation

learning and structured prediction to no-regret online learning.

In: International Conference on Artificial Intelligence and

Statistics.

Rusu AA, Colmenarejo SG, Gulcehre C, et al. (2015) Policy distil-

lation. arXiv preprint arXiv:1511.06295.

720 The International Journal of Robotics Research 40(4-5)



Sadeghi F and Levine S (2017) CAD2RL: Real single-image flight

without a single real image. In: Robotics: Science and Systems.

Schaal S (2006) Dynamic movement primitives-a framework for

motor control in humans and humanoid robotics. In: Adaptive

motion of animals and machines. Berlin: Springer, pp. 261–

280.

Schaul T, Borsa D, Modayil J and Pascanu R (2019) Ray interfer-

ence: A source of plateaus in deep reinforcement learning. In:

Multidisciplinary Conference on Reinforcement Learning and

Decision Making.

Schoettler G, Nair A, Luo J, et al. (2019) Deep reinforcement

learning for industrial insertion tasks with visual inputs and

natural rewards. In: International Conference on Intelligent

Robots and Systems.

Schulman J, Levine S, Abbeel P, Jordan M and Moritz P (2015)

Trust region policy optimization. In: International Conference

on Machine Learning.

Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O

(2017) Proximal policy optimization algorithms. arXiv pre-

print arXiv:1707.06347.

Schwab D, Springenberg TJ, Martins FM, et al. (2019) Simultane-

ously learning vision and feature-based control policies for

real-world ball-in-a-cup. In: Robotics: Science and Systems.

Sener O and Koltun V (2018) Multi-task learning as multi-

objective optimization. In: Advances in Neural Information

Processing Systems, pp. 527–538.

Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W and Webb

R (2017) Learning from simulated and unsupervised images

through adversarial training. In: Conference on Computer

Vision and Pattern Recognition.

Silver T, Allen K, Tenenbaum J and Kaelbling L (2018) Residual

policy learning. arXiv preprint arXiv:1812.06298.

Singh A, Yang L, Finn C and Levine S (2019) End-to-end robotic

reinforcement learning without reward engineering. In:

Robotics: Science and Systems.

Sünderhauf N, Brock O, Scheirer WJ, et al. (2018) The limits and

potentials of deep learning for robotics. The International

Journal of Robotics Research 37(4–5): 405–420.

Tan J, Gu Y, Liu CK and Turk G (2014) Learning bicycle stunts.

ACM Transactions on Graphics 33(4): 50.

Tan J, Zhang T, Coumans E, et al. (2018) Sim-to-real: Learning

agile locomotion for quadruped robots. In: Robotics: Science

and Systems.

Tang D, Agarwal A, O’Brien D and Meyer M (2010) Overlapping

experiment infrastructure: More, better, faster experimentation.

In: International Conference on Knowledge Discovery and

Data Mining. New York: ACM Press.

Tedrake R, Zhang TW and Seung HS (2015) Learning to walk in

20 minutes. In: Workshop on Adaptive and Learning Systems.

ten Pas A, Gualtieri M, Saenko K and Platt R (2017) Grasp pose

detection in point clouds. The International Journal of

Robotics Research 36(13–14): 1455–1473.

Thananjeyan B, Balakrishna A, Nair S, et al. (2020) Recovery RL:

Safe reinforcement learning with learned recovery zones. arXiv

preprint arXiv:2010.15920.

Tobin J, Fong R, Ray A, Schneider J, Zaremba W and Abbeel P

(2017) Domain randomization for transferring deep neural

networks from simulation to the real world. In: International

Conference on Intelligent Robots and Systems. IEEE.

Toussaint M (2009) Robot trajectory optimization using approxi-

mate inference. In: International Conference on Machine

Learning. New York: ACM Press, pp. 1049–1056.

Večerı́k M, Hester T, Scholz J, et al. (2017) Leveraging demon-

strations for deep reinforcement learning on robotics problems

with sparse rewards. arXiv preprint arXiv:1707.08817.

Viereck U, ten Pas A, Saenko K and Platt R (2017) Learning

a visuomotor controller for real world robotic grasping

using simulated depth images. In: Conference on Robot

Learning.

Wu YH, Charoenphakdee N, Bao H, Tangkaratt V and Sugiyama

M (2019) Imitation learning from imperfect demonstration. In:

International Conference on Machine Learning, Proceedings

of Machine Learning Research.

Xiao T, Jang E, Kalashnikov D, et al. (2020) Thinking while mov-

ing: Deep reinforcement learning with concurrent control. In:

International Conference on Learning Representations.

Xie A, Ebert F, Levine S and Finn C (2019) Improvisation through

physical understanding: using novel objects as tools with visual

foresight. arXiv preprint arXiv:1904.05538.

Xie A, Singh A, Levine S and Finn C (2018) Few-shot goal infer-

ence for visuomotor learning and planning. Proceedings of

Machine Learning Research 87: 40–52.

Xie Q, Luong MT, Hovy E and Le QV (2020) Self-training with

noisy student improves ImageNet classification. In: Conference

on Computer Vision and Pattern Recognition.

Yang Y, Caluwaerts K, Iscen A, Tan J and Finn C (2019) NoRML:

No-reward meta learning. In: AAMAS.

Yang Y, Caluwaerts K, Iscen A, Zhang T, Tan J and Sindhwani V

(2020) Data efficient reinforcement learning for legged robots.

In: Conference on Robot Learning.

Yen-Chen L, Bauza M and Isola P (2020) Experience-embedded

visual foresight. In: Conference on Robot Learning.

Yu K and Rodriguez A (2018) Realtime state estimation with tac-

tile and visual sensing. Application to planar manipulation. In:

International Conference on Robotics and Automation. IEEE.

Yu W, Tan J, Bai Y, Coumans E and Ha S (2019) Learning fast

adaptation with meta strategy optimization. arXiv preprint

arXiv:1909.12995.

Yu W, Tan J, Liu CK and Turk G (2017) Preparing for the

unknown: Learning a universal policy with online system

identification. In: Robotics: Science and Systems.

Yu W, Turk G and Liu CK (2018) Learning symmetric and low-

energy locomotion. ACM Transactions on Graphics 37(4): 144.

Zeng A, Song S, Welker S, Lee J, Rodriguez A and Funkhouser T

(2018) Learning synergies between pushing and grasping with

self-supervised deep reinforcement learning. In: International

Conference on Intelligent Robots and Systems, pp. 4238–4245.

Zhu H, Gupta A, Rajeswaran A, Levine S and Kumar V (2019)

Dexterous manipulation with deep reinforcement learning:

Efficient, general, and low-cost. In: International Conference

on Robotics and Automation. IEEE.

Ziebart BD, Maas A, Bagnell JA and Dey AK (2008) Maximum

entropy inverse reinforcement learning. In: National Confer-

ence on Artificial Intelligence.

Ibarz et al. 721


