
lab2: Linear Regression Analysis:

Use the following command lines to install and load package “gamair”. In order to activate the installing line,
you need to remove symbol “#” appearing at the begining of that line.
# install.packages("gamair")
library(gamair)

Hubble Data:

Asssigning different values to plotting character, pch, you are able to create plots with various symbols.
Alternativly, you can use alphabetic characters:
data(hubble)
names(hubble)
hubble$x
plot(hubble$x,hubble$y, pch = 12)

plot(hubble$x,hubble$y, pch = 128)

plot(hubble$x,hubble$y, pch = "A")

We now fit a linear model to predict velocity from distance. More precisely, we are aiming to set β0 = 0 and
fit model y = β1 ∗ x+ error

hmod <- lm(y ~ x - 1, data=hubble)
#summary(hmod)
coef(hmod)

## x
## 76.58117

So, the output suggests: y = 76.58117 ∗ x+ error.

In the following, we use command “layout()” to create an array with arbitrary dimension and place the
consecutive plots as the elements of that array. For better understanding, make comparison between the
arguments of the layout command in the following two r chunks as well as corresponding outputs. Note that
“ncol” stands for “number of columns”, similarly “nrow” stands for “number of rows”.
layout(matrix(1:2,ncol=2))
plot(y ~ x, data = hubble)
abline(hmod)
plot(hmod, which = 1)
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layout(matrix(1:6,ncol=3))
plot(hmod, which = c(1,2,3,4,5,6))
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Plots above suggest the model assumptions hold approximately true: absolute value of standardized residuals
do not exceed 3 (or 2) and similarly cook distances do not exceed 1. According to QQ-plot, there is no typical
deviation from theoretical normal distribution. Although, it seems the assumption “Constant Error Variance”
is mildly violated.
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Cloud Seeding Data:
#install.packages("HSAUR3")
library( HSAUR3)

## Loading required package: tools

We are aimimg to fit the following linear model :

rainfall = β0 + β1 ∗ seeding+ β2 ∗ time+ β3 ∗ (1 − seeding) ∗ sne+ β4 ∗ seeding ∗ sne+ β5 ∗ (1 − seeding) ∗
cloudcover + β6 ∗ seeding ∗ cloudcover + β7 ∗ (1 − seeding) ∗ prewetness+ β8 ∗ seeding ∗ prewetness+ β9 ∗
(1 − seeding) ∗ echomotion+ β10 ∗ seeding ∗ echomotion

In other words, we wish to fit two different models corresponding to different levels of variable “seeding”. We
call these levels “0” and “1” corresponding to “seedingno” and “seedingyes” respectively. Assign value “0” to
variable seeding to obtain one of the models. Do the same for “seeding = 1” and obtain the other model.
clouds.formula <- rainfall ~ seeding + seeding:(sne + cloudcover + prewetness + echomotion) + time
clouds.lm <- lm(clouds.formula, data = clouds)

summary(clouds.lm)

##
## Call:
## lm(formula = clouds.formula, data = clouds)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5259 -1.1486 -0.2704 1.0401 4.3913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.34624 2.78773 -0.124 0.90306
## seedingyes 15.68293 4.44627 3.527 0.00372 **
## time -0.04497 0.02505 -1.795 0.09590 .
## seedingno:sne 0.41981 0.84453 0.497 0.62742
## seedingyes:sne -2.77738 0.92837 -2.992 0.01040 *
## seedingno:cloudcover 0.38786 0.21786 1.780 0.09839 .
## seedingyes:cloudcover -0.09839 0.11029 -0.892 0.38854
## seedingno:prewetness 4.10834 3.60101 1.141 0.27450
## seedingyes:prewetness 1.55127 2.69287 0.576 0.57441
## seedingno:echomotionstationary 3.15281 1.93253 1.631 0.12677
## seedingyes:echomotionstationary 2.59060 1.81726 1.426 0.17757
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.205 on 13 degrees of freedom
## Multiple R-squared: 0.7158, Adjusted R-squared: 0.4972
## F-statistic: 3.274 on 10 and 13 DF, p-value: 0.02431

The above summary result suggests:

if seeding = 0, then: rainfall = −0.34624 − 0.04497 ∗ time+ 0.41981 ∗ sne+ 0.38786 ∗ cloudcover+ 4.10834 ∗
prewetness+ 3.15281 ∗ echomotion

if seeding = 1, then: rainfall = −0.34624 + 15.68293 − 0.04497 ∗ time− 2.77738 ∗ sne− 0.09839 ∗ cloudcover+
1.55127 ∗ prewetness+ 2.59060 ∗ echomotion

If you fit a similar model with β0 = 0, you will see intercepts −0.34624 and −0.34624 + 15.68293 directly in
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the output table.

You can deduce a similar result by including variable “sne” (one of the interaction effect parents) in the
model above.

We also conclude that: R2 = 0.7158, R2
adj = 0.4972,

p-value for rejecting “H0 : β0 = β1 = ...β10 = 0” againts “H1 : there is at least one non− zero parameter”
equals 0.02431. So, we reject H0 at the level 0.05.

We can also look at the regression relationship between S-Ne and rainfall with and without seeding:
layout(1)
psymb <- as.numeric(clouds$seeding)
plot(rainfall ~ sne, data = clouds, pch = psymb, xlab = "S-Ne criterion")
abline(lm(rainfall ~ sne, data = clouds, subset = seeding == "no"))
abline(lm(rainfall ~ sne, data = clouds, subset = seeding == "yes"), lty = 2)
legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n")
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interpretation of this plot:

Similar to the previous part, we have two different regression lines corresponding to “seeding = 0” and
“seeding = 1”, see solid line and dashed line.

Is there an interaction between seeding and S-Ne? The lines are not parallel, that means the coefficient of
variable “sne” in one level is significantly different from the coefficient of variable “sne” in the other model.
Consequently there is interaction between variables seeding and "sne".

4


