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Exercise 1. a) We have

E(Y ) = E(Xa) =

∫ +∞

0
xa λ exp(−λx) dx < +∞ if and only if a > −1

b) Likewise:

E(Y 2) = E(X2a) =

∫ +∞

0
x2a λ exp(−λx) dx < +∞ if and only if a > −1

2

c) Therefore, c1) Var(Y ) = E(Y 2) − E(Y )2 is well defined and finite ∀a > −1
2 ; c2) Var(Y ) is well

defined but takes the value +∞ for −1
2 ≥ a > −1, and c3) Var(Y ) is ill-defined (indetermination

of the type ∞−∞) for a ≤ −1.

d) The only integer values of a for which E(Y ) and Var(Y ) are well-defined are non-negative values.
For a = 0, we have Y = X0 = 1, so E(Y ) = 1 and Var(Y ) = 0. For a ≥ 1, we obtain by integration
by parts:

E(Y ) = E(Xa) =

∫ +∞

0
xa λ exp(−λx) dx

=

∫ +∞

0

a

λ
xa−1 λ exp(−λx) dx = . . . =

a!

λa
· 1

so

E(Y 2) = E(X2a) =
(2a)!

λ2a
and Var(Y ) = E(Y 2)− E(Y )2 =

(2a)!− (a!)2

λ2a

Exercise 2. First note that as X ∼ −X, it holds that P({X ≥ 0}) ≥ 1
2 and E(X) = 0.

a) Cov(X,Y ) = E(X 1{X≥0}) ≥ 0 as X 1{X≥0} is a non-negative random variable.

b) Using the suggested inequality, we find

Cov(X,Y ) ≤
√

Var(X)
√
Var(Y ) =

√
1
√
P({X ≥ 0})− P({(X ≥ 0})2 ≤

√
1

4
=

1

2
= C

as P({X ≥ 0})− P({(X ≥ 0})2 ≤ 1
4 (which is maximized when P({X ≥ 0}) = 1

2).

c) The computation gives

Cov(X,Y ) = E(X 1{X≥0}) =

∫ +∞

0
x

1√
2π

exp(−x2/2) dx =
1√
2π

(− exp(−x2/2))

∣∣∣∣x=+∞

x=0

=
1√
2π

(clearly satisfying the above two inequalities)

d) The answer to the first question is yes: take X such that P({X = +1}) = P({X = −1}) = 1
2

(verifying X ∼ −X, Var(X) = 1 and Cov(X,Y ) = 1
2).

e) The answer to the first question is no, but the one to the second is yes: consider Xn such
that P({Xn = n}) = P({Xn = −n}) = 1

2n2 and P({Xn = 0}) = 1 − 1
n2 . Then Xn ∼ −Xn and
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Var(Xn) = 1 for every n, and Cov(Xn, Yn) = E(Xn 1{Xn≥0}) = n 1
2n2 = 1

2n →
n→∞

0.

Exercise 3. a) Using the formula given in the problem set, we obtain:

E(X) =

∫ +∞

0
exp(−λt) dt =

1

λ

b) Using the formula given in the problem set together with the fact that X is integer-valued, we
obtain:

E(X) =
∑
k≥0

∫ k+1

k
P({X ≥ t}) dt =

∑
k≥0

∫ k+1

k
P({X ≥ k + 1}) dt =

∑
k≥0

P({X ≥ k + 1}) =
∑
k≥1

P({X ≥ k})

c) Applying the above formula, we obtain in the first case (X ∼ Bern(p)):

E(X) = P({X ≥ 1}) = p

In the second case (X ∼ Geom(p)), we obtain:

E(X) =
∑
k≥1

∑
m≥k

pm (1− p) =
∑
k≥1

pk
∑
m≥k

pm−k (1− p) =
∑
k≥1

pk
1

1− p
1− p =

1

1− p
− 1 =

p

1− p

Exercise 4. a) The computation of the characteristic function gives in this case:

ϕX(t) =
∑
k≥0

λke−λ

k!
eitk =

∑
k≥0

(λeit)ke−λ

k!
= eλe

it
e−λ = eλ(e

it−1)

b) The general expression for ϕX is given by

ϕX(t) =
∑
ℓ∈Z

P({X = ℓ}) eitℓ

Plugging this expression into the proposed formula, we find

1

2π

∫ π

−π
e−itk ϕX(t) dt =

∑
ℓ∈Z

P({X = ℓ}) 1

2π

∫ π

−π
e−it(ℓ−k) dt =

∑
l∈Z

P({X = ℓ}) δkℓ = P({X = k})

where we have switched the sum and integral without too much checking and we have used the
fact that for k ̸= ℓ:

1

2π

∫ π

−π
e−it(ℓ−k) dt =

1

2π

eik(ℓ−k)

i(ℓ− k)

∣∣∣∣t=π

t=−π

= 0

c) Let us compute

1

2π

∫ π

−π
e−itk cos(t) dt =

1

4π

∫ π

−π
e−itk (eit + e−it) dt

=
1

4π

∫ π

−π
(e−it(k−1) + e−it(k+1)) dt =

{
1
2 if k ∈ {−1,+1}
0 otherwise

by the same argument as above.
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d) We know that ϕX(t) = cos(t) is a characteristic function because ϕX(0) = cos(0) = 1, ϕX is
continuous on R, and also positive semi-definite. Indeed, using the trigonometric identity cos(a−
b) = cos(a) cos(b) + sin(a) sin(b), we obtain

n∑
j,k=1

cj ck ϕX(tj − tk) =

n∑
j,k=1

cj ck cos(tj − tk) =

n∑
j,k=1

cj ck (cos(tj) cos(tk) + sin(tj) sin(tk))

=

∣∣∣∣∣∣
n∑

j=1

cj cos(tj)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
n∑

j=1

cj sin(tj)

∣∣∣∣∣∣
2

≥ 0

for every n ≥ 1, t1, . . . , tn ∈ R and c1, . . . , cn ∈ C.

Exercise 5. a) i) From the course, we know that if E(|X|) < +∞, then ϕX is continuously
differentiable on R. Using the contraposition, we deduce that E(|X|) = +∞ here.

a) ii) From the course again, the fact that ϕX is integrable on R implies that X admits a pdf pX .

b) By the inversion formula seen in class, we have

pX(x) =
1

2π

∫
R
e−itxe−λ|t| dt =

1

2π

(∫ 0

−∞
e−t(ix−λ) dt+

∫ +∞

0
e−t(ix+λ) dt

)
=

1

2π

(
− 1

ix− λ
+

1

ix+ λ

)
=

1

π

λ

x2 + λ2

This pdf is the that of a (centered) Cauchy distribution with parameter λ (also known as Lorentz
distribution in physics). The word “centered” is a bit misleading here, as we have seen in part a)i)
that E(|X|) = +∞ (which can also been checked directly from the expression of pX), so that E(X)
is ill-defined. Nevertheless, the pdf appears to have a peak clearly centered in x = 0 here, and
writing E(X) = 0 can actually be justified via a more general definition of expectation. Besides,
the parameter λ > 0 is connected to the width of the peak, but is by no means connected to the
standard deviation of the random variable X, which is truly infinite.

c) Using the change of variable formula, we obtain

pY (x) = p1/X(x) = pX

(
1

x

)
·
∣∣∣∣− 1

x2

∣∣∣∣ = 1

π

λ

x−2 + λ2

1

x2

=
1

π

λ

1 + λ2 x2
=

1

π

λ−1

λ−2 + x2

so we see that Y is again a Cauchy random variable, with parameter 1/λ.

d) By the factorization property of characteristic functions, we obtain

ϕX1+...+Xn(t) =
∏n

i=1 ϕXi(t) = (ϕX(t))n = exp(−λn|t|)

so X1 + . . . + Xn is also a Cauchy random variable with parameter λn, and Zn = X1+...+Xn
n is a

Cauchy random variable with parameter λ, for every n ≥ 1. Similarly, we obtain, using part b),

ϕ1/X1+...+1/Xn
(t) = (ϕ1/X(t))n = exp(−n|t|/λ)

so 1/X1+. . .+1/Xn is a Cauchy random variable with parameter n/λ. Therefore, again by part b),
1

1/X1+...+1/Xn
is a Cauchy random variable with parameter λ/n and Wn = n

1/X1+...+1/Xn
is (again)

a Cauchy random variable with parameter λ.
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e) The first oddity of the above results is that the empirical average Zn = X1+...+Xn
n does not

converge to a limit as n goes to infinity. One reason for this is that E(|X|) = +∞, so the law of
large numbers does not hold, as we shall see later in the course. The second oddity is that the sum
of an arbitrary number of Cauchy random variables is still a Cauchy random variable. The other
well known distribution sharing this property is the Gaussian distribution, but that’s basically it,
as this property is an exception among probability distributions. The third oddity is that the arith-
metic mean Zn of the random variables X1, . . . , Xn has the same distribution as their harmonic
mean Wn. However, as we deal here with random variables taking positive and negative values, the
classical inequality “arithmetic mean ≥ harmonic mean” does not hold, so there is no contradiction.
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