Exploratory data analysis

- Also called descriptive statistics, this term is used to describe the process of 'looking at the data' prior to formal analysis
- In this phase of analysis, data are examined for quality and 'cleaned' as well as displayed to provide an overall impression of results
- We will look at two types of summaries:
- Graphical summaries
- Numerical summaries
- Necessary to use statistical software

Why R?

- Powerful, flexible, and extensible statistical computing language and environment
- Wide range of built-in statistical functions and add-on packages available, including a growing number specifically for microarray data analysis
- High quality, customizable graphics capabilities
- Available for Unix/Linux, Windows, Mac
- All this and ... R is free!

Variables (I)

- Statisticians call characteristics which can differ across individuals variables
- Types of variables
- Categorical (also called qualitative)
- Examples: eye color, favorite television program
- Numerical (also called quantitative)
- Examples: height, number of children, fluorescence intensity

Variables (II)

- Categorical variables may be
- Nominal - the categories have names, but no ordering (e.g. eye color)
- Ordinal - categories have an ordering (e.g. 'Always', 'Sometimes', 'Never')
- Numerical variables may be
- Discrete - possible values can differ only by fixed amounts (most commonly counting values)
- Continuous - can take on any value within a range (e.g. any positive value)

Univariate Data

- Measurements on a single (continuous) variable X
- Summarizing X
- Graphically:
- Distribution: histogram, QQ plot, dotplot, boxplot
- Quality: cluster analysis, PCA, spatial plots
- Numerically:
- Distribution: quantiles
- Center: mean, median
- Spread: SD, IQR, MAD

Bivariate / Multivariate Data

- Bivariate (or multivariate) data - data with measurements on two (or more) variables
- Here, we will look at two continuous variables
- Want to explore the relationship between the two variables
- Graphically: scatterplot
- Numerically: correlation coefficient

Histogram: same data

Histogram of simdata

Histogram of simdata

Histogram of simdata

Histogram of simdata

Some general histogram forms

left-skewed

right-skewed

symmetric

Histogram: bars and smoothed

Histogram of Ozone Pollution Data with Kernel Density Plot

Histogram: comparing distributions

- Histogram, smoothed histogram (kernel), normal density
- NOT the best way to compare distributions (use QQ plot)

QQ-Plot

- Quantile-quantile plot
- Used to assess whether a sample follows a particular (e.g. normal) distribution (or to compare two samples)
- A method for looking for outliers when data are mostly normal

Typical deviations from straight line patterns

- Outliers
- Curvature at both ends (long or short tails)
- Convex/concave curvature (asymmetry)
- Horizontal segments, plateaus, gaps

Outliers

Long Tails

Short Tails

Histogram of $\times 1$

Normal Q-Q Plot

Plateaus/Gaps

Dot plot

- Values plotted separately (as dots) for each group
- Most useful when there aren't too many observations

Numerical Summaries

- To provide objectivity (put in same objects to same methods, get out same classification
- This is in contrast to experts deciding
- To provide stability
- Would like classification to be 'robust' to a wide variety of additions of objects, or characteristics
- Categorical/Qualitative variables
- frequency table
- Numerical/Quantitative variables
- Distribution: quantiles
- Center: mean, median
- Spread: SD, IQR, MAD

Quantiles

- The $p^{\text {th }}$ quantile is the number that has the proportion p of the data values smaller than it

Measures of center

- Mean
- Total of the values divided by the number of values
- Appropriate for distributions that are fairly symmetric
- Sensitive to outliers (since all values contribute equally)
- 'Balance-point’ for a histogram
- Median
- The median value of a variable is the 'middlemost number: 50% (half) of the values are smaller than it, 50% bigger
- NOT sensitive to outliers (since it 'ignores' most values)
- Appropriate summary for skewed distributions

Relative location of mean and median

$$
\text { mean }=\text { median }
$$

Measures of spread

- Standard deviation (SD)
-Square root of the average* of squared deviations from mean
-Appropriate when center measured with the mean
- Interquartile range (IQR)
- Distance between $25^{\text {th }}\left(Q_{1}\right)$ and $75^{\text {th }}\left(Q_{3}\right)$ percentiles:

$$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

-One measure of spread when center measured with median

- Median Absolute Deviation (MAD)
- Median of absolute values of deviations from median
- More robust measure of spread than SD
- Another way (besides IQR) to measure spread when center measured with median

Five-number summary and boxplot

- Overall summary of the distribution: Min, Q_{1}, Median, $\mathrm{Q}_{3}, \mathrm{Max}$
- A boxplot provides a visual summary:

Box plot combined with dot plot

- 'jitter', size and color aid in the comparison of groups

Robustness and resistance

- These concepts refer to lack of sensitivity to assumed distributions and effects of a small number of values or outliers
- These qualities are desirable: you don't want inferences to be strongly influenced by only a small part of the data set
- The mean is very sensitive to outlying values, the median is very resistant

Robustness of mean, median

Just us:

With Mark:

Scatterplot

- We can graphically summarize a bivariate data set with a scatterplot (also sometimes called a scatter diagram)
- Plots values of one variable on the horizontal axis and values of the other on the vertical axis
- Can be used to see how values of 2 variables tend to move with each other (i.e. how the variables are associated)

Scatterplots

positive association
negative association

Scatterplots: customized

All pairwise plots: pairs / splom

Anderson's lris Data-- 3 species

Numerical Summary

- Typically, a bivariate data set is summarized numerically with 5 summary statistics
- These provide a fair summary for scatterplots with the same general shape as we just saw, like an oval or an ellipse
- We can summarize each variable separately: X mean, X SD; Y mean, Y SD
- But these numbers don't tell us how the values of X and Y vary together

Correlation Coefficient

- The (sample) correlation coefficient \boldsymbol{r} is defined as the average value of the product

(X in SUs)* ${ }^{*}(Y$ in SUs)

- [SU = standard units = (value-mean)/SD]
- r is a unitless quantity
- $-1 \leq r \leq 1$
- r is a measure of LINEAR ASSOCIATION

What r is...

- r is a measure of LINEAR ASSOCIATION
- The closer r is to -1 or 1 , the more tightly the points on the scatterplot are clustered around a line
- The sign of $r(+$ or -) is the same as the sign of the slope of the line
- When $r=0$, the points are not LINEARLY ASSOCIATED - this does NOT mean there is NO ASSOCIATION

...and what r is NOT

- r is a measure of LINEAR ASSOCIATION
- r does NOT tell us if Y is a function of X
- r does NOT tell us if X causes Y
- r does NOT tell us if Y causes X
- r does NOT tell us what the scatterplot looks like

$r \approx 0$

random
scatter
curved
pattern

Categorical data

- So far, we have been looking at continuous response variables
- Sometimes, the response is categorical
- male/female
- yes/no
- In this case, we are often interested in questions dealing with proportions (rather than means)

Two-way tables

- Table below is from a blind 5 year randomized study of physicians testing whether regular aspirin use reduces mortality from cardiovascular disease
- Every other day, participants took an aspirin or a placebo

	MI		
Group	Yes	No	Total
Placebo	189	10,845	11,034
Aspirin	104	10,933	11,037

Table layout

- Tables often better than words to convey quantitative data
- Avoid too many decimal places
- Usually better to use space to separate columns (rather than lines):

Subject	Time 1	Time 2
Joe	3.67390	2.79495
Mary	4.75435	1.23578
Nancy	3.96456	2.84379

Subject	Time 1	Time 2
Joe	3.67	2.79
Mary	4.75	1.24
Nancy	3.96	2.84

Presenting results

- Communicating results is an important part of science
- There is no magic 'formula' for how to present results!
- You need to think carefully about the message you wish to give and how to present it clearly and convincingly
- Avoid excessive computer output

Edward Tufte on graphics

- 'Excellence in statistical graphics consists of complex ideas communicated with clarity, precision and efficiency'; should
- show the data
- make the reader think about substance
- avoid data distortion
- present many numbers in a small space
- encourage the eye to make comparisons
- reveal several levels of detail
- serve a clear purpose
- See also work by Karl Broman

Graphical display tips

- Show the data (!!)
- Don't use pie charts
- Consider logs
- Take differences
- Ease comparisons
- Things to be compared should be adjacent
- Align vertically
- Common axes
- Labels not legends (where possible)
- Should sorting really be alphabetical?
- Consider whether the 0 is needed

More graphical display tips

- Data density - for example, number of data points per square centimeter
- Avoid 'chartjunk' - decoration that provides no data
- Use color to convey information
- Use appropriate dimensionality
- Did I say Don't use pie charts ?? :)
- And now: a graphics tour for discussion ...

Show the data

Consider logs

Group

Alphabetical?

Do we really need color here?

Revenue Estimation - Year 2002

3 lines?

More about lines

Daily Server Utilization

- Different types (solid, dotted)?
- Colors?
- 3D??

What the *^*\$\%\# are these saying?

What improvements might be made?

Pie Charts: JUST SAY NO !!!

- Pie charts are a bad way to display information
- The eye is
-good at judging linear measures and
-bad at judging relative areas, volumes or angles
- A pie chart is never necessary - data that can be shown by pie charts always can be shown by a dot plot (or bar chart, or table)
- 3D version even worse!

Spot the differences: pie vs. bar

Even worse examples of pie charts

Things to be compared: adjacent

Use color where helpful

Where easiest to compare A and B ?

Easier to compare vertical aligned

Men

Men

Use common axes

Use labels not legends *

* Where possible

Consider whether you need 0

Several types of problems

The same data

	5 year	10 year	15 year	20 ye
Prostate				
Thyroid	96	-96	94	-95
Testis		94		
Melanomas		-87		-88
Breast			84	
Hodgkin's disease				
Corpus uteri, uterus				
Urinary, bladder				
Cervix, uteri 71				
Larynx		64	63	
Rectum				
Kidney, renal pelvis				
Colon $62 \times 50 \sim 47$				
Non-Hodgkin's				
Oral cavity, pharynx				
Ovary				
Leukemia				
Brain, nervous system $32 \sim 26$				
Multiple myeloma $30 \sim 26$				
Stomach $24 \times 7 \longrightarrow 5$				
Lung and bronchus 15×15				
Esophagus 14×8				
Liver, bile duct		-6	-6	
Pancreas		- 3 -	-3	-3

More advanced techniques

- Cluster analysis
- Leads to readily interpretable figures
- Can be helpful for identifying patterns in time or space
- Can be used for exploratory purposes
- Used to find groups of objects when not already known
- Principal components analysis
- Often used as exploratory tool
- Dimensionality reduction
- Useful for EDA and quality assessment of highdimensional datasets

