SV - Applied biostatistics

http://moodle.epfl.ch/course/view.php?id=14074
Lecture 1b

■ Statistical modeling

- (Brief!!) review : CLT, Cl , hypothesis tests

■ Review : hypothesis tests for μ, p
■ Review : power and sample size
■ Hypothesis tests, Cl : comparison of two populations
■ Student's t distribution, t-test

Statistical models

- A statistical model is an approximate mathematical description of the mechanism that generated the observations, which takes into account unexpected random errors:
- gives an idealistic representation of reality
- makes explicit assumptions (that could be false!!) about the process under study
- permits an abstract reasoning
- The model is expressed by a Le modéle s'exprime par une family of theoretical distributions that contains the 'ideal' cases for the included RV s

■ e.g. : tosses of a coin ...
■ A useful model offers a good compromise between

- true description of the reality (many parameters correct assumptions)
- ease of mathematical manipulation
- production of solutions/predictions close to the observation(s)

A simple model

A simple case : several measures of a physical quantity μ are taken, e.g. length of a field, person's height ...

- Such measures possess in general a random component due to measurement errors
- One possible error mechanism :

$$
\begin{array}{ccccc}
\text { measure } & = & \text { true theoretical value } & + \text { measurement error } \\
y & = & \mu & + & \epsilon
\end{array}
$$

■ that is: measures with additive errors
■ If there is no colitsystematic error (biais), the random error should be 'centered' $(E[\epsilon]=0)$

- Often reasonable to think that the precision of each measure is the same $\left(\operatorname{Var}(\epsilon)=\sigma^{2}\right.$ for each measurement)
- One possible specification for the error distribution is Normal $N\left(0, \sigma^{2}\right)$
- All models are wrong ; some are useful

Estimation of the unknown parametres

■ Once a model is chosen, we are interested in estimating unknowns : the parameters of the model
■ We observe realizations of a RV for which the distribution is known (other than the parameter values)

- Thus, we must estimate the parameters using the observations X_{1}, \ldots, X_{n}
- $\hat{\mu}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- $\hat{\sigma}^{2}=S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- The estimator S^{2} is unbiased for σ^{2}, and is independent of that for $\mu(\bar{X})$

Review : Central Limit Theorem (CLT)

- The Central Limit Theorem is one of the most important results in probability/statistics, and is widely used as a problem-solving tool

■ Theorem (CLT) : Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed (iid) $R V s$, each having mean μ and variance σ^{2}

- Then for n 'sufficiently large', the distribution of
- the sum : $\sum_{i=1}^{n} X_{i}$ is approximately $N\left(n \mu, n \sigma^{2}\right)$

■ the mean : \bar{X} is approximately $N\left(\mu, \sigma^{2} / n\right)$

Review : Confidence intervals

Suppositions for Cls :
1 There is an unknown population parameter
2 There is a random sample (independent observations or SRS from a large population, where the sample size is small compared to the population size)

3 We can apply the CLT
Mechanics :

- Cl for the population mean : $\bar{x} \pm z_{1-\alpha / 2} \sigma / \sqrt{n}$ (use s instead of σ if σ is unknown)
- CI for the population proportion (or percentage) :
$\hat{p} \pm z_{1-\alpha / 2} \sqrt{\hat{p}(1-\hat{p}) / n}$

Review : steps in hypothesis testing

1 Identify the population parameter being tested
2 Formulate the NULL and ALT hypotheses
3 Compute the test statistique (TS)
4 Compute the p-value $p_{\text {obs }}$

- $p_{\text {obs }}$ is the probability of obtaining a value of T as or more extreme (as far away from what we expected or even farther, in the direction of the ALT) than the one we got, ASSUMING THE NULL IS TRUE

5 Decision rule and practical interpretation : REJECT the NULL hypothesis H if $p_{o b s} \leq \alpha$

Test of comparison on 2 independent samples

- Until now, we have been interested by a single population. Often, however, we are interested in the comparison of two populations. In this case, we carry out a test on two independent samples.
- When we compare two means (or proportions) the basic notion is the same as above : for T, we use the standardized difference between the sample means (or proportions).
- TS for the difference in means from two independent
populations: $\frac{\overline{X_{1}}-\overline{X_{2}}}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}$
(use s instead of σ if σ is unknown)
- TS for the difference in proportions from two independent
populations : $\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}_{1}\left(1-\hat{p}_{1}\right) / n_{1}+\hat{p}_{2}\left(1-\hat{p}_{2}\right) / n_{2}}}$

Regarding small samples...

- The z-test that we have studied assumes that the sampling distribution of the test statistic T is Normal
- exactly, or

■ approximately, by the CLT

- However, if the population $\mathrm{SD} \sigma$ is unknown and the sample size is small (for example, under 30) then the true sampling distribution of T has heavier tails than the Normal distribution

■ In this case, you should use the t-test

'Student' (= William Sealy Gosset)

W. S. Gosset

Guinness

Distribution of T when σ^{2} is unknown

- Recall the test statistic $T=\left(\bar{X}-\mu_{0}\right) /(\sigma / \sqrt{n})$

■ If the sample size n is 'sufficiently large', then under H, $T \sim N(0,1)$ regardless of the distribution of X (CLT)
■ If the observations $X_{1}, \ldots, X_{n} \sim N\left(\mu_{0}, \sigma^{2}\right)$, then $T \sim N(0,1)$ for known σ^{2}, regardless of the sample size n
■ BUT : If the sample size n is small, and the variance σ^{2} is unknown, the true distribution of T has more variability than the Normal distribution (due to the imprecise estimation of σ based on few obs)
■ For the case (1) $X_{1}, \ldots, X_{n} \sim N\left(\mu_{0}, \sigma^{2}\right)$; (2) n small ; and (3) σ^{2} is unknown, then $T=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}} \sim t_{n-1}$, the Student t distribution, with $n-1$ degrees of freedom (df)

- The distribution de T depends on the number of observations n)

Student t distribution

Table of the t distribution

cum. prob	${ }^{t} .50$	${ }^{t} .75$	$t_{\text {. } 80}$	$t_{\text {. }}^{85}$	${ }^{t .90}$	${ }^{t} .95$	$t_{\text {. } 975}$	${ }^{t} .99$	$t_{\text {. } 995}$	${ }^{t} .999$	${ }^{\text {t.9995 }}$
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0\%	50\%	60\%	70\%	80\%	90\%	95\%	98\%	99\%	99.8\%	99.9\%
	Confidence Level										

Confidence interval

In the case
$1 X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$
$2 n$ small; and
3 σ^{2} is unknown:
■ we can make a confidence interval (CI) as before, but using the t distribution instead of the Normal (z)

- Cl for the population mean : $\bar{x} \pm \mathrm{t}_{\mathrm{n}-1,1-\alpha / \mathbf{2}} \leq \sqrt{n} / \sqrt{n}$

Hypothesis test : find the rejection region

$$
\begin{aligned}
& H: \mu=\mu_{\mathrm{H}} \\
& A: \mu \neq \mu_{\mathrm{H}}
\end{aligned}
$$

$$
H: \mu=\mu_{\mathrm{H}}
$$

A: $\mu<\mu_{\mathrm{H}}$

$$
\begin{aligned}
& H: \mu=\mu_{\mathrm{H}} \\
& A: \mu>\mu_{\mathrm{H}}
\end{aligned}
$$

Test for comparing two (independent) means: equal variances

- We want to compare the means of two sets of measures :

■ Group 1 (p. ex. 'control') : x_{1}, \ldots, x_{n}
■ Group 2 (p. ex. 'treatment') : y_{1}, \ldots, y_{m}

- We can model these data as :

$$
\begin{aligned}
& x_{i}=\mu+\epsilon_{i} ; i=1, \ldots, n \\
& y_{j}=\mu+\Delta+\tau_{i} ; j=1, \ldots, m
\end{aligned}
$$

where Δ signifies the effect of the treatment (compared to the 'control' group)

- $H: \Delta=0$ vs. $A: \Delta \neq 0$ or $A: \Delta>0$ or $A: \Delta<0$

Equal variances, cont.

$\begin{aligned} & T=\text { obs. diff. } / \mathrm{ES}(\text { obs. diff. })=\frac{\Delta}{\sqrt{\hat{\operatorname{Var}(\hat{\Delta})}}} ; \\ & \hat{\Delta}=\bar{y}-\bar{x} ; \operatorname{Var}(\hat{\Delta})=\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{m}=\frac{n+m}{n m} \sigma^{2}\end{aligned}$
■ We assume that :
■ the variances of the 2 samples are equal :

$$
\operatorname{Var}(\epsilon)=\operatorname{Var}(\tau)
$$

- the observations are independent
- the 2 samples are independent

■ We can estimate the variances separately :

$$
\begin{aligned}
& s_{x}^{2}=\left(\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}\right) /(n-1) \\
& s_{y}^{2}=\left(\left(y_{1}-\bar{y}\right)^{2}+\cdots+\left(y_{m}-\bar{y}\right)^{2}\right) /(m-1)
\end{aligned}
$$

■ When the variances are equal, we can combine the two estimators : $s_{p}^{2}=\left((n-1) s_{x}^{2}+(m-1) s_{y}^{2}\right) /(n+m-2)$

$$
\Rightarrow t_{o b s}=\frac{\bar{y}-\bar{x}}{\sqrt{s_{p}^{2}(n+m) /(n m)}} \sim t_{n+m-2} \text { under } H
$$

Test for comparing two (independent) means: unequal variances

- If $\sigma_{x}^{2} \neq \sigma_{y}^{2}$, we can use

$$
T_{\text {Welch }}=\frac{\bar{Y}-\bar{X}}{\sqrt{S_{x}^{2} / n+S_{y}^{2} / m}}
$$

- The distribution of the statistic $T_{\text {Welch }}$ is only approximately t, with a number of degrees of liberty calculated based on s_{x}, s_{y}, n and m
■ Welch test
- In practice, if the variances are rather different (ratio more than 3), we could use this statistic (instead of the one with variance s_{p}^{2})

Paired experiments

- For an experiment carried out in blocks of two units, the power of the t-test can be increased
- This idea permits us to eliminate the influences of other variables (e.g. age, sex, etc.), in giving them different 'treatments'
■ Thus, we have a more precise comparison of the two conditions

t-test for a paired experiment

- The data are of the form :

$$
\text { expected value } \mu+\Delta
$$

- Each block allows us to evaluate the effect of the treatment

■ Here, we consider the differences

$$
d_{1}=y_{1}-x_{1}, \ldots, d_{n}=y_{n}-x_{n}
$$

as a sample of measurements coming from a distribution with expected value Δ

- $H: \Delta=0$ vs. $A: \Delta \neq 0$ or $A: \Delta>0$ or $A: \Delta<0$
- $T=t_{\text {paired }}=\frac{\bar{d}}{s_{d} / \sqrt{n}}$, where
$s_{d}^{2}=\left(\left(d_{1}-\bar{d}\right)^{2}+\cdots+\left(d_{n}-\bar{d}\right)^{2}\right) /(n-1)$
■ Under H, $t_{\text {paired }} \sim t_{n-1}$

Hypothesis truth vs. decision

Truth Decision	not rejected	rejected
true H	R specificity	X Type I error (False +) α
false H	X Type II error (False -) β	Power 1- $\beta ;$ sensitivity

Power

Example (see power example)

A tire company has developed a new tread design. To determine if the newly designed tire has a mean life of 60,000 miles or more before it wears out, a random sample of 16 prototype tires is tested. The mean tire life for this sample is 60,758 miles. Assume that the tire life is normally distributed with unknown mean μ and (known) SD $\sigma=1500$ miles.
(a) Test the hypotheses at $\alpha=0.01$. What do you conclude ??
(b) What is the power of the test if the true mean life for the new tread design is 61,000 miles ? ?
(c) Suppose that at least 90% power is needed to identify a design that has mean wear of 61,000 miles. How many tires should be tested??

Power curve

Power curve for detecting difference of mean of 0.87 or more when sampling population with known mean and standard deviation

