
Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 2: Dynamic Programming
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2023)



License Information for Theory and Methods for Reinforcement Learning (EE-618)

▷ This work is released under a Creative Commons License with the following terms:
▷ Attribution

▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

▷ Non-Commercial
▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the

work for commercial purposes – unless they get the licensor’s permission.
▷ Share Alike

▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor’s work.

▷ Full Text of the License

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 60

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode


A refresher on Markov chain

Definition (Markov Chain)
A (time-homogeneous) Markov chain is a stochastic process {X0, X1, . . .}, taking values on a countable
number of states, satisfying the so-called Markov property, i.e.,

P(Xt+1 = j|Xt = i, Xt−1, . . . , X0) = P(Xt+1 = j|Xt = i) = Pij .

Markov Process
A Markov process is a tuple⟨S, P, µ⟩, where
▶ S is the set of all possible states
▶ Pss′ = P(s′|s): S → ∆(S) is the transition model
▶ µ is the initial state distribution: s0 ∼ µ ∈ ∆(S)

Definition (Stationary distribution)
If a Markov chain is irreducible and aperiodic with finite states (i.e., ergodic), then there exists a unique
stationary distribution d⋆ and {Xt} converges to it, i.e., limt→∞ P t

ij = d⋆
j , ∀i, j. We can represent this via

d⋆ = d⋆P where [P ]ij = Pij and d⋆ is a row vector. Hence, d⋆ is the left principal eigenvector of P .

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 3/ 60



Markov Decision Processes (MDPs)

◦ MDPs are building blocks in RL and form the Markov blanket for the rewards

◦ Also recall the (controlled) Markov property

P(st+1 = s′|st = s, at = a, . . . , s0, a0) = P(st+1 = s|st = s, at = a) = P(s′|s, a)

Markov Decision Process
An MDP is a tuple (S,A, P, r, µ, γ), where

▶ S is the set of all possible
states

▶ A is the set of all possible
actions

▶ P(s′|s, a): S ×A → ∆(S) is
the transition model

▶ r(s, a): S ×A → R is the
reward function

▶ µ is the initial state
distribution: s0 ∼ µ ∈ ∆(S)

▶ γ is the discount factor:
γ ∈ (0, 1)

s0

r0

a0

s1

r1

a1

s2

r2

a2

Figure: An MDP graphical model

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 60



Example 1: gridworld

▶ State S: the agent’s position

▶ Action A: moving north/south/east/west
▶ Reward r:

▶ -1 if moving outside the world
▶ +10 if moving to A
▶ +5 if moving to B
▶ 0 otherwise

▶ Transition model P :
▶ move to the adjacent grid according to the direction
▶ stay unchanged if moving toward the wall
▶ transit to A’ if moving into A, transit to B’ if moving

into B

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 60



Example 2: recycling robot

◦ Consider a rechargeable mobile robot collecting empty drink cans [19]

▶ State S: {high, low}, high/low charge level
▶ Action A:

▶ if high, action set {wait, search}
▶ if low, action set {wait, search, recharge}

▶ Reward r:
▶ r(st = high, at = search) = number of collected cans
▶ r(st = low, at = recharge) = 0
▶ · · ·

▶ Transition model P :
▶ P (st+1 = high | st = high, at = search) = α

▶ P (st+1 = low | st = low, at = wait) = 1
▶ · · ·

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 60



Example 2: recycling robot (cont’d)

Remarks: ◦ Note that here r(s, a, s′) is the reward of the state-action-next-state tuple.

◦ While strictly not required, we can define r(s, a) = Es′∼P(·|s,a) [r(s, a, s′)].

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 60



MDPs: policies

What is our goal?
Find a behaviour or rule to make decisions that maximize the expected return.

◦ In general, a policy selects an action based on the history ht := (s0:t, a0:t−1) := (s0, a0, . . . , st−1, at−1, st)
▶ A stationary Markov policy is a mapping π : S → A or π : S → ∆(A), where ∆ is the appropriate

probability simplex.

Deterministic Policy
▶ Stationary policy π : S → A, at = π(st)
▶ Markov policy πt : S → A, at = πt(st)
▶ History-dependent policy πt : Ht → A

▶ Ht is the set of histories up to time t.
▶ at = πt(ht)

Randomized Policy:
▶ Stationary policy π : S → ∆(A), at∼π(·|st)
▶ Markov policy πt : S → ∆(A), at∼πt(·|st)
▶ History-dependent policy πt : Ht → ∆(A)

▶ Ht is the set of histories up to time t.
▶ at∼πt(·|ht)

Remarks: ◦ The infinite horizon objective can be maximized by a stationary deterministic policy.

◦ The finite horizon objective needs instead a (nonstationary) deterministic Markov policy.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 60



From MDPs to performance criteria

Reminder: ◦ We have described the role of MDPs while establishing a performance criterion.

▶ Finite Horizon: Cumulative reward and average reward.
▶ Infinite Horizon: Discounted reward and average reward.
◦ In this course, we mainly focus on infinite-horizon MDPs:

J(π) = E

[
∞∑

t=0

γtr(st, at)
∣∣∣s0 ∼ µ, π

]
.

◦ We use γ ∈ (0, 1) to trade off past and present rewards.

Observations: ◦ If γ = 1, the total reward may be infinite, e.g., when the Markov process is cyclic.

◦ With γ ∈ (0, 1), assuming bounded rewards, i.e., r <∞, the return will always be finite.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 60



Value functions

Definition (State-Value Function)

V π(s) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, π

]

Definition (Quality Function / State-Action Value Function)

Qπ(s, a) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, a0 = a, π

]

Observations: ◦ V π(s) represents the total expected return starting at state s under policy π.

◦ Qπ(s, a) also represents the total expected return when choosing action a in state s and then
following policy π.

◦ For convenience, we may drop the π in RHS when it is clear from the context.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 60



Value functions

Definition (State-Value Function)

V π(s) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, π

]

Definition (Quality Function / State-Action Value Function)

Qπ(s, a) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, a0 = a, π

]

Observations: ◦ V π(s) represents the total expected return starting at state s under policy π.

◦ Qπ(s, a) also represents the total expected return when choosing action a in state s and then
following policy π.

◦ For convenience, we may drop the π in RHS when it is clear from the context.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 60



Value functions (cont’d)

Pop quiz: ◦ What is the relation between V π and Qπ?

Answer: ◦ For any policy π : S → ∆(A), it holds that

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 60



Value functions (cont’d)

Pop quiz: ◦ What is the relation between V π and Qπ?

Answer: ◦ For any policy π : S → ∆(A), it holds that

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 60



Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s1 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s1 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 60



Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s1 = s′, a0 = a, π

]

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s1 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 60



Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s1 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s1 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 60



Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s1 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s1 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) V π(s′)□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 60



Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s1 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s1 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 60



Occupancy measure

Definition (Occupancy measure)
The occupancy measure for a certain µ and π is defined as follows:

λπ
µ(s, a) = (1− γ)

∞∑
t=0

γtP[st = s, at = a | s0 ∼ µ, π],

where P[· | s0 ∼ µ, π] denotes the probability of an event when following policy π starting from s0 ∼ µ.

Interpretation: ◦ λπ
µ(s, a) is the normalized discounted visitation frequency of the state-action pair (s, a) when

acting according to policy π.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 13/ 60



Visualize an occupancy measure
◦ Let’s consider the policies represented by the arrows in the left most column.

◦ The corresponding occupancy measures varying the discounted factor are depicted just below.

◦ Notice that increasing γ makes the effect of the initial distribution less and less remarked.

0 2 4 6 8 10

0

2

4

6

8

10

softoptimal

160

140

120

100

80

60

40

20

0 0 2 4 6 8

0

2

4

6

8

OccupancyMeasure = 0.7

0.0

0.2

0.4

0.6

0.8

1.0
0 2 4 6 8

0

2

4

6

8

OccupancyMeasure = 0.8

0.0

0.2

0.4

0.6

0.8

1.0
0 2 4 6 8

0

2

4

6

8

OccupancyMeasure = 0.9

0.0

0.2

0.4

0.6

0.8

1.0
0 2 4 6 8

0

2

4

6

8

OccupancyMeasure = 0.99

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

0

2

4

6

8

10

uniform

250

200

150

100

50

0
0 2 4 6 8

0

2

4

6

8

Uniform for = 0.7

0.0

0.2

0.4

0.6

0.8

1.0
0 2 4 6 8

0

2

4

6

8

Uniform for = 0.8

0.0

0.2

0.4

0.6

0.8

1.0
0 2 4 6 8

0

2

4

6

8

Uniform for = 0.9

0.0

0.2

0.4

0.6

0.8

1.0
0 2 4 6 8

0

2

4

6

8

Uniform for = 0.99

0.0

0.2

0.4

0.6

0.8

1.0

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 60



Occupancy measure and value function

Pop quiz: ◦ What is the relation between the occupancy measure and the value function?

Answer: (1− γ)V π(µ) = ⟨λπ
µ, r⟩.

Remark: It holds that

V π(µ) = ⟨µ, V π⟩ = E

[
∞∑

t=0

γtr(st, at) | s0 ∼ µ, π

]
.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 60



Occupancy measure and value function

Pop quiz: ◦ What is the relation between the occupancy measure and the value function?

Answer: (1− γ)V π(µ) = ⟨λπ
µ, r⟩.

Remark: It holds that

V π(µ) = ⟨µ, V π⟩ = E

[
∞∑

t=0

γtr(st, at) | s0 ∼ µ, π

]
.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 60



Occupancy measure and value function

Pop quiz: ◦ What is the relation between the occupancy measure and the value function?

Answer: (1− γ)V π(µ) = ⟨λπ
µ, r⟩.

Remark: It holds that

V π(µ) = ⟨µ, V π⟩ = E

[
∞∑

t=0

γtr(st, at) | s0 ∼ µ, π

]
.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 60



Occupancy measure and value function (cont’d)

Derivation:

V π(µ) = E

[
∞∑

t=0

γtr(st, at) | s0 ∼ µ, π

]

= E

[
∞∑

t=0

γt
∑
s,a

r(s, a)1(st = s, at = a) | s0 ∼ µ, π

]

=
∑
s,a

r(s, a) E

[
∞∑

t=0

γt
1(st = s, at = a) | s0 ∼ µ, π

]
(Linearity of expectation)

=
∑
s,a

r(s, a)
∞∑

t=0

γt P[(st = s, at = a) | s0 ∼ µ, π] (Dominated convergence theorem)

=

∑
s,a

r(s, a)λπ
µ(s, a)

1− γ
=
⟨λπ

µ, r⟩
1− γ

. □

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 60



Occupancy measure and value function (cont’d)

Derivation:

V π(µ) = E

[
∞∑

t=0

γtr(st, at) | s0 ∼ µ, π

]

= E

[
∞∑

t=0

γt
∑
s,a

r(s, a)1(st = s, at = a) | s0 ∼ µ, π

]

=
∑
s,a

r(s, a) E

[
∞∑

t=0

γt
1(st = s, at = a) | s0 ∼ µ, π

]
(Linearity of expectation)

=
∑
s,a

r(s, a)
∞∑

t=0

γt P[(st = s, at = a) | s0 ∼ µ, π] (Dominated convergence theorem)

=

∑
s,a

r(s, a)λπ
µ(s, a)

1− γ
=
⟨λπ

µ, r⟩
1− γ

. □

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 60



Occupancy measure and value function (cont’d)

Derivation:

V π(µ) = E

[
∞∑

t=0

γtr(st, at) | s0 ∼ µ, π

]

= E

[
∞∑

t=0

γt
∑
s,a

r(s, a)1(st = s, at = a) | s0 ∼ µ, π

]

=
∑
s,a

r(s, a) E

[
∞∑

t=0

γt
1(st = s, at = a) | s0 ∼ µ, π

]
(Linearity of expectation)

=
∑
s,a

r(s, a)
∞∑

t=0

γt P[(st = s, at = a) | s0 ∼ µ, π] (Dominated convergence theorem)

=

∑
s,a

r(s, a)λπ
µ(s, a)

1− γ
=
⟨λπ

µ, r⟩
1− γ

. □

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 60



Occupancy measure and value function (cont’d)

Derivation:

V π(µ) = E

[
∞∑

t=0

γtr(st, at) | s0 ∼ µ, π

]

= E

[
∞∑

t=0

γt
∑
s,a

r(s, a)1(st = s, at = a) | s0 ∼ µ, π

]

=
∑
s,a

r(s, a) E

[
∞∑

t=0

γt
1(st = s, at = a) | s0 ∼ µ, π

]
(Linearity of expectation)

=
∑
s,a

r(s, a)
∞∑

t=0

γt P[(st = s, at = a) | s0 ∼ µ, π] (Dominated convergence theorem)

=

∑
s,a

r(s, a)λπ
µ(s, a)

1− γ
=
⟨λπ

µ, r⟩
1− γ

. □

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 60



Optimal value functions

◦ Let Π be the set of all (possibly non-stationary and randomized) policies.

Definition (Optimal Value Function)

V ⋆(s) := max
π∈Π

V π(s)

Definition (Optimal State Value Function)

Q⋆(s, a) := max
π∈Π

Qπ(s, a)

Pop quiz: ◦ What is the relation between V ⋆ and Q⋆?

Answer:
Q⋆(s, a) = r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′) (3)

V ⋆(s) = max
a∈A

Q⋆(s, a) (4)

◦ Self-exercise: prove equation (4).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 60



Optimal value functions

◦ Let Π be the set of all (possibly non-stationary and randomized) policies.

Definition (Optimal Value Function)

V ⋆(s) := max
π∈Π

V π(s)

Definition (Optimal State Value Function)

Q⋆(s, a) := max
π∈Π

Qπ(s, a)

Pop quiz: ◦ What is the relation between V ⋆ and Q⋆?

Answer:
Q⋆(s, a) = r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′) (3)

V ⋆(s) = max
a∈A

Q⋆(s, a) (4)

◦ Self-exercise: prove equation (4).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 60



Solving MDPs: find the optimal policy

The ultimate goal in RL
To find an optimal policy π⋆ ∈ Π such that

V π⋆
(s) = V ⋆(s) := max

π∈Π
V π(s), ∀s ∈ S.

Remark: ◦ The optimal policy may not be unique, while V ⋆ is unique.

Key Questions
▶ Q1: Does the optimal policy π⋆ exist?

▶ Q2: How to evaluate my current policy π, i.e., how to compute V π(s)? –policy evaluation

▶ Q3: If π⋆ exists, how to improve my current policy π, i.e., how to find π⋆? –policy improvement

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 18/ 60



Bellman optimality conditions

◦ The optimal value function V ⋆ is the unique fixed point of the following equation:

V ⋆(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]
.

Remarks: ◦ This requirement is also known as the Bellman optimality equation.

◦ We will show that there exists a deterministic optimal policy.

◦ Fixed-point perspective motivates value iteration (VI) and policy iteration (PI)
methodologies.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 19/ 60



Existence of an optimal policy

Theorem (Existence of an optimal policy [1] [12])
For an infinite horizon MDP M = (S,A, P, t, µ, γ), there exists a stationary and deterministic policy π such
that for any s ∈ S and a ∈ A, we have

V π(s) = V ⋆(s), Qπ(s, a) = Q⋆(s, a).

Remark: ◦ Finding π⋆ can be done by first computing V ⋆ or Q⋆

◦ Note that we can directly get a (deterministic and stationary) optimal policy from Q⋆:

π⋆(s) = arg max
a∈A

Q⋆(s, a).

◦ Note: Proof in the supplementary.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 20/ 60



Bellman consistency equation

Theorem (Bellman Consistency Equation)

V π(s) = Ea∼π(·|s)

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

]

Matrix Form

Vπ = Rπ + γPπVπ

◦ Can be derived from equations (1) and (2):

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

◦ We can write, with |S| being the cardinality of S:

Vπ ∈ R|S| : Vπ
s = V π(s);

Rπ ∈ R|S|, Rπ
s :=

∑
a∈A

π(a|s)r(s, a);

Pπ ∈ R|S|×|S| : Pπ
s,s′ :=

∑
a∈A

π(a|s)P (s′ | s, a).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 60



Bellman consistency equation

Theorem (Bellman Consistency Equation)

V π(s) = Ea∼π(·|s)

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

]

Matrix Form

Vπ = Rπ + γPπVπ

◦ Can be derived from equations (1) and (2):

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

◦ We can write, with |S| being the cardinality of S:

Vπ ∈ R|S| : Vπ
s = V π(s);

Rπ ∈ R|S|, Rπ
s :=

∑
a∈A

π(a|s)r(s, a);

Pπ ∈ R|S|×|S| : Pπ
s,s′ :=

∑
a∈A

π(a|s)P (s′ | s, a).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 60



Closed-form solution for policy evaluation

Closed-Form Solution of Vπ

Vπ = (I− γPπ)−1Rπ .

Remarks: ◦ This is one of exact solution methods for policy evaluation.

◦ Note that the matrix I− γPπ is always invertible for γ ∈ (0, 1).

◦ The solution of Bellman equation is always unique.

◦ Computation cost: O(|S|3 + |S|2|A|), which can be expensive for large state spaces.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 22/ 60



Bellman expectation operator and fixed-point perspective

Definition (Bellman Expectation Operator)
Let T π : R|S| → R|S| be that

T πV := Rπ + γPπV (5)

Remarks: ◦ The Bellman equation implies that Vπ is the fixed point of T π : T πVπ = Vπ .

◦ T π is a linear operator and is a γ-contraction mapping.

◦ The solution of Bellman equation is always unique.

◦ Fixed point iteration: Vt+1 = T πVt, t = 0, 1, . . ..

◦ limt→∞(T π)tV0 = Vπ .

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 23/ 60



Bellman optimality equations

Theorem (Bellman Optimality Equation)

V ⋆(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]

Q⋆(s, a) = r(s, a) + γ

[∑
s′∈S

P(s′|s, a)
(

max
a′∈A

Q⋆(s′, a′)
)]

Remarks: ◦ These requirement are also known as Bellman optimality conditions.

◦ Obtained by combining equations (3) and (4).

◦ Fixed-point perspective motivates value iteration (VI) and policy iteration (PI)
methodologies.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 24/ 60



Bellman optimality perator

Definition (Bellman Optimality Operator)

(TV)(s) := max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V(s′)

]

Remarks: ◦ The optimal value function V⋆ is the fixed point of T , i.e.,

TV⋆ = V⋆

◦ The Bellman optimality operator is a γ-contraction mapping w.r.t. ℓ∞-norm.

◦ The Bellman operator is also monotonic (component-wise): V1 ≤ V2 ⇒ TV1 ≤ TV2.

◦ We can define a similar Bellman operator on the Q-function and show similar properties.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 25/ 60



Contraction of bellman optimality operator

Theorem (Contraction Property of T )
The Bellman optimality operator T defined above is a γ-contraction mapping under ℓ∞-norm, i.e., for any
V′, V ∈ R|S|, we have ∥∥TV′ − TV

∥∥
∞
≤ γ

∥∥V′ −V
∥∥

∞
,

where ∥x∥∞ := maxi |xi|.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 26/ 60



Contraction of bellman optimality operator (proof)

Proof.
For any V′, V ∈ R|S| and s ∈ S, we have∣∣(TV′

)
(s)− (TV)(s)

∣∣
=

∣∣∣max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V′(s′)
]
− max

a′∈A

[
r(s, a′) + γ

∑
s′∈S

P(s′|s, a′)V(s′)
]∣∣∣

≤ max
a∈A

∣∣∣(r(s, a) + γ
∑

s′∈S
P(s′|s, a)V′(s′)

)
−

(
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V(s′)
)∣∣∣

≤ max
a∈A

γ
∑

s′∈S
P(s′|s, a)

∣∣V′(s′)−V(s′)
∣∣

≤
∥∥V′ −V

∥∥
∞

max
a∈A

γ
∑

s′∈S
P(s′|s, a) = γ

∥∥V′ −V
∥∥

∞
,

which concludes the proof. □

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 27/ 60



Pause and reflect

◦ Before we move on, take a minute to reflect on these important notations:

▷ π, π⋆, V π(s), V ⋆(s), Qπ(s, a), Q⋆(s, a), T π , T

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 28/ 60



Solving MDPs

◦ What we talked about:

▶ Optimal state-value Function (V ⋆(s)) and optimal action-value Function (Q⋆(s, a)).
▶ Bellman consistency equation (Vπ = Rπ + γPπVπ).
▶ Bellman expectation operator and fixed-point perspective (T πV := Rπ + γPπV)
▶ Bellman optimality equations and Bellman optimality operator.

◦ How do we use this to do “planning,” i.e., finding an optimal policy via MDPs (our goal)?

Algorithm Component Output

Value Iteration (VI) Bellman Optimality Operator T VT such that ∥VT − V ⋆∥ ≤ ϵ

Policy Iteration (PI) Bellman Operator T π + Greedy Policy V ⋆ and π⋆

Observation: ◦ These solutions require, and we assume throughout, that the transitions dynamics are known.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 29/ 60



Value iteration (VI)

Algorithm: Value Iteration (VI) for solving MDPs
Start with an arbitrary guess V0 (e.g., V0(s) = 0 for any s)
for each iteration t do

Apply the Bellman operator T at each iteration

Vt+1 = TVt.

end for

Remarks: ◦ Finding V ⋆ or π⋆ is equivalent to finding a fixed point of T .

◦ Value iteration can be therefore viewed as a fixed-point iteration.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 30/ 60



Discussion on value iteration

◦ After obtaining V⋆ via VI, we can obtain an optimal policy from the greedy policy:

π⋆(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]
.

◦ Alternatively, we can run Q-value iteration and compute π⋆ via

π⋆(s) = arg max
a∈A

Q⋆(s, a)

Remark: ◦ Can be derived from equations (1) and (2):

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 60



Discussion on value iteration

◦ After obtaining V⋆ via VI, we can obtain an optimal policy from the greedy policy:

π⋆(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]
.

◦ Alternatively, we can run Q-value iteration and compute π⋆ via

π⋆(s) = arg max
a∈A

Q⋆(s, a)

Remark: ◦ Can be derived from equations (1) and (2):

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 60



Convergence of value iteration

Theorem (Linear Convergence of Value Iteration)
The value iteration algorithm attains a linear convergence rate, i.e.,

∥Vt −V⋆∥∞ ≤ γt∥V0 −V⋆∥∞

Proof.

∥Vt −V⋆∥∞ = ∥TVt−1 − TV⋆∥∞ ≤ γ∥Vt−1 −V⋆∥∞ ≤ · · · ≤ γt∥V0 −V⋆∥∞

□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 60



Convergence of value iteration

Theorem (Linear Convergence of Value Iteration)
The value iteration algorithm attains a linear convergence rate, i.e.,

∥Vt −V⋆∥∞ ≤ γt∥V0 −V⋆∥∞

Proof.

∥Vt −V⋆∥∞ = ∥TVt−1 − TV⋆∥∞ ≤ γ∥Vt−1 −V⋆∥∞ ≤ · · · ≤ γt∥V0 −V⋆∥∞

□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 60



Directly update the policy

◦ Value iteration first finds V⋆, then computes the optimal policy π⋆ by the greedy policy.

◦ Now we directly search for the optimal policy π⋆.

Some intuition: ◦ Start from an initial guess π, iteratively perform:

1. Evaluate policy: compute the value function Vπ of the current policy
⇒ Policy evaluation

2. Improve policy: update the guess by the greedy policy w.r.t. Vπ

⇒ Policy improvement

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 33/ 60



Directly update the policy

◦ Value iteration first finds V⋆, then computes the optimal policy π⋆ by the greedy policy.

◦ Now we directly search for the optimal policy π⋆.

Some intuition: ◦ Start from an initial guess π, iteratively perform:

1. Evaluate policy: compute the value function Vπ of the current policy
⇒ Policy evaluation

2. Improve policy: update the guess by the greedy policy w.r.t. Vπ

⇒ Policy improvement

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 33/ 60



Policy improvement theorem

Theorem (Policy Improvement)
If a (deterministic) policy π′ satisfies the following

Qπ(s, π′(s)) ≥ V π(s) ∀ s ∈ S, (6)

then we have V π′ (s) ≥ V π(s) for any s ∈ S.

Remarks: ◦ Improving the current policy by one step everywhere, we can improve the whole policy.

◦ It suggests a natural way of improving the current policy via

πt+1(s)← arg max
a∈A

Qπt (s, a).

◦ Indeed, V πt+1 (s) ≥ V πt (s), ∀ s ∈ S, and the inequality is strict if πt is suboptimal.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 34/ 60



Policy iteration

Algorithm: Policy Iteration (PI) for solving MDPs
Start with an arbitrary policy guess π0
for each iteration t do

(Step 1: Policy evaluation) Compute Vπt :
(Option 1) Iteratively apply policy value iteration, Vt ← T πt Vt, until convergence
(Option 2) Use the closed-form solution: Vπt = (I− γPπt )−1Rπt

(Step 2: Policy improvement) Update the current policy πt by the greedy policy

πt+1(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V πt (s′)

]
. (7)

end for

Remarks: ◦ Recall that we assume that there exists a deterministic optimal policy.

◦ Greedy policy achieves the optimal deterministic policy.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 35/ 60



Comparison

Algorithm Value Update Policy Update

Value Iteration (VI) Vt+1 = TVt. None

Policy Iteration (PI) Vt+1 = E
[
r(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)|πt

]
Greedy Policy

Algorithm Per iteration cost Number of iterations Output

Value Iteration (VI) O
(
|S|2|A|

)
T = O

(
log(ϵ−1(1−γ))

log γ

)
VT such that ∥VT − V ⋆∥ ≤ ϵ

Policy Iteration (PI) O
(
|S|3 + |S|2|A|

)
T = O

( |S|(|A|−1)
1−γ

)
V ⋆ and π⋆

Observations: ◦ VI and PI are broadly dynamic programming approaches.

◦ PI converges in finite number of iterations [14] whereas VI does not [13].

◦ These solution mythologies are broadly known as model-based RL.

◦ Additional reading : Modified Policy Iteration [15]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 36/ 60



Convergence of policy iteration

Theorem (Linear Convergence of Policy Iteration)
The policy iteration attains a linear convergence rate,

∥Vπt −V⋆∥∞ ≤ γt∥Vπ0 −V⋆∥∞

Proof.

∥Vπt −V⋆∥∞ ≤ ∥TVπt−1 − TV⋆∥∞ ≤ γ∥Vπt−1 −V⋆∥∞ ≤ · · · ≤ γt∥V0 −V⋆∥∞

□

Remarks: ◦ In fact, with some extra work, it is possible to show a stronger result.

◦ Policy Iteration converges to the optimum in at most O
( |S|(|A|−1)

1−γ

)
[14].

◦ Due to the discrete nature of actions, the proof is conceptually simple.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 37/ 60



Convergence of policy iteration

Theorem (Linear Convergence of Policy Iteration)
The policy iteration attains a linear convergence rate,

∥Vπt −V⋆∥∞ ≤ γt∥Vπ0 −V⋆∥∞

Proof.

∥Vπt −V⋆∥∞ ≤ ∥TVπt−1 − TV⋆∥∞ ≤ γ∥Vπt−1 −V⋆∥∞ ≤ · · · ≤ γt∥V0 −V⋆∥∞

□

Remarks: ◦ In fact, with some extra work, it is possible to show a stronger result.

◦ Policy Iteration converges to the optimum in at most O
( |S|(|A|−1)

1−γ

)
[14].

◦ Due to the discrete nature of actions, the proof is conceptually simple.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 37/ 60



Convergence of policy iteration

Theorem (Linear Convergence of Policy Iteration)
The policy iteration attains a linear convergence rate,

∥Vπt −V⋆∥∞ ≤ γt∥Vπ0 −V⋆∥∞

Proof.

∥Vπt −V⋆∥∞ ≤ ∥TVπt−1 − TV⋆∥∞ ≤ γ∥Vπt−1 −V⋆∥∞ ≤ · · · ≤ γt∥V0 −V⋆∥∞

□

Remarks: ◦ In fact, with some extra work, it is possible to show a stronger result.

◦ Policy Iteration converges to the optimum in at most O
( |S|(|A|−1)

1−γ

)
[14].

◦ Due to the discrete nature of actions, the proof is conceptually simple.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 37/ 60



Summary I

◦ Basic concepts of Markov decision process (MDP)
▶ Policy, value functions, optimal value functions
▶ Bellman equations and Bellman operators
▶ Fixed point viewpoints
▶ Existence and construction of optimal policy

◦ Exact solution methods for policy evaluation

◦ Exact solution methods for solving MDPs
▶ Value iteration: iteratively apply Bellman operator
▶ Policy iteration: alternatively execute policy evaluation and policy improvement

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 38/ 60



Summary I

◦ Basic concepts of Markov decision process (MDP)
▶ Policy, value functions, optimal value functions
▶ Bellman equations and Bellman operators
▶ Fixed point viewpoints
▶ Existence and construction of optimal policy

◦ Exact solution methods for policy evaluation

◦ Exact solution methods for solving MDPs
▶ Value iteration: iteratively apply Bellman operator
▶ Policy iteration: alternatively execute policy evaluation and policy improvement

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 38/ 60



Summary I

◦ Basic concepts of Markov decision process (MDP)
▶ Policy, value functions, optimal value functions
▶ Bellman equations and Bellman operators
▶ Fixed point viewpoints
▶ Existence and construction of optimal policy

◦ Exact solution methods for policy evaluation

◦ Exact solution methods for solving MDPs
▶ Value iteration: iteratively apply Bellman operator
▶ Policy iteration: alternatively execute policy evaluation and policy improvement

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 38/ 60



From planning to reinforcement learning

Fundamental Challenge 1
The dynamic programming approaches (VI and PI) as well as the
linear programming approach all require the full knowledge of the
transition model P and the reward.

⇒Need sampling approaches

Fundamental Challenge 2
The computation and memory cost can be very expensive for large
scale MDP problems.

⇒Need new representations

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 39/ 60



From planning to reinforcement learning

Fundamental Challenge 1
The dynamic programming approaches (VI and PI) as well as the
linear programming approach all require the full knowledge of the
transition model P and the reward.

⇒Need sampling approaches

Fundamental Challenge 2
The computation and memory cost can be very expensive for large
scale MDP problems.

⇒Need new representations

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 39/ 60



From planning to reinforcement learning

Fundamental Challenge 1
The dynamic programming approaches (VI and PI) as well as the
linear programming approach all require the full knowledge of the
transition model P and the reward.

⇒Need sampling approaches

Fundamental Challenge 2
The computation and memory cost can be very expensive for large
scale MDP problems.

⇒Need new representations

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 39/ 60



Overview of reinforcement learning approaches

◦ Value-based RL
▶ Learn the optimal value functions V ⋆, Q⋆

◦ Policy-based RL
▶ Learn the optimal policy π⋆

◦ Model-based RL
▶ Learn the model P, R and then do planning

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 40/ 60



Model-based vs model-free methods

Figure: [8]

◦ Make full use of “experiences”

◦ Can reason about model uncertainty

◦ Sample efficient for easy dynamics

◦ Direct and simple

◦ Not affected by poor model estimation

◦ Not sample efficient

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 41/ 60



Online vs. offline reinforcement learning

Figure: [4]

Online RL

◦ Collect data by interacting with environment

◦ Exploitation-exploration tradeoff

Offline/Batch RL

◦ Use previously collected data

◦ Data is static, no online data collection

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 42/ 60



On-policy vs. Off-policy reinforcement learning

Figure: [11]

On-policy RL

◦ Learn based on data from current policy

◦ Always online

Off-policy RL

◦ Learn based on data from other policies

◦ Can be online or offline

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 43/ 60



Representation learning

Figure: http://selfdrivingcars.space/?p=68

Large or continuous state and action spaces

=⇒

Function approximation

V (s) ≈ Vθ(s)
Q(s, a) ≈ Qθ(s, a)
π(a|s) ≈ πθ(a|s)

P(s′|s, a) ≈ Pθ(s′|s, a)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 44/ 60

http://selfdrivingcars.space/?p=68


Representation learning

Linear Function Approximation
▶ Linear combination of basis functions

Vθ(s) = [ϕ1(s), . . . , ϕd(s)]


θ1
θ2
.
..

θd


▶ Reproducing kernel Hilbert space (RKHS) [16]

▶ Neural tangent kernel [7]

Nonlinear Function Approximation
▶ Fully connected neural networks [10]
▶ Convolutional neural networks [9]
▶ Residual networks [5]
▶ Recurrent networks [6]
▶ Self-attention [21]
▶ Generative adversarial networks [3]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 45/ 60



Mean estimation

◦ Given a sequence of samples X1, X2, . . . , Xn, we want to estimate the mean µ = E[X].

◦ Sample average approximation:

µ̂n =
1
n

n∑
i=1

Xi

Equivalently,

µ̂n =
1
n

(
Xn + (n− 1)

1
n− 1

∑n−1

i=1
Xi

)
= µ̂n−1 +

1
n

(Xn − µ̂n−1)

◦ Stochastic approximation:
µn+1 = µn + αn(Xn+1 − µn), n = 1, 2, . . .

Remark: ◦ µn → µ as n→∞ under Robbins-Monro stepsize, i.e.,
∑

n
αn =∞,

∑
n

α2
n <∞.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 46/ 60



Model-free prediction

Goal:
Given policy π : S → ∆(A), estimate V π(s) or Qπ(s, a) from episodes of experience under π

V π(s) := E

[
∞∑

t=0

γtr(st, at)|s0 = s

]
.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 47/ 60



Monte Carlo method

Idea: ◦ Estimate V π(s) by the average of returns following all visits to s.

Monte Carlo Method
for each episode do

Generate an episode τ = {s0, a0, r0, s1, . . .} following π
for each state st do

Compute return Gt = rt + γrt+1 + · · ·
Update counter nst ← nst + 1
Update V (st)← V (st) + 1

nst
(Gt − V (st))

end for
end for

Observations: ◦ The value estimates are independent and do not build on that of other state.

◦ Learning can be slow when the episodes are long.

◦ Convergence: MC converges to V π if each state is visited infinitely often.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 48/ 60



Temporal difference learning

◦ Recall the Bellman consistency equation: V π(s) = Ea∼π(·|s)
[
r(s, a) + γEs′∼P(s′|s,a)V π(s′)

]
Idea: ◦ Incrementally estimate V π(s) by the intermediate return plus estimated return at next state.

V (st)← V (st) + αt

(
rt + γV (st+1)− V (st)︸                             ︷︷                             ︸

TD error:=δt

)
TD Learning / TD(0)

for each step of an episode τ do
Observe (st, at, rt, st+1) following π
Update V (st)← V (st) + αt(rt + γV (st+1)− V (st))

end for

Observations: ◦ Similar to mean estimation but now we have biased estimates!
◦ Similar to MC: learn directly from episodes of experiences without the MDP knowledge.
◦ Unlike MC: learn from incomplete episodes, and applicable to non-terminating environment.
◦ Convergence: V → V π if each state is visited infinitely often and αt → 0 at suitable rate.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 49/ 60



DP vs MC vs TD

DP update MC update TD update

◦ DP: no sampling, exploits Markov property
◦ MC: sampling, model-free, does not exploit Markov property
◦ TD: sampling, model-free, online, exploits Markov property

(Figure from Hasselt, UCL 2021)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 50/ 60



Numerical example: Random walk

A E B D C 
0 0 0 0 0 1 

Start 

0 1 2 3 4 5 6
state

0.0

0.2

0.4

0.6

0.8

1.0

0 episodes
1 episodes
10 episodes
100 episodes
true values

0 20 40 60 80 100
episodes

0.00

0.05

0.10

0.15

0.20

0.25

TD, alpha=0.15
TD, alpha=0.1
TD, alpha=0.05
MC, alpha=0.01
MC, alpha=0.02
MC, alpha=0.03
MC, alpha=0.04

Figure: Left: values learned after various number of updates in a single run of TD(0). Right: the root mean-squared (RMS)
error between the value functions learned and the true values. [18]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 51/ 60



Bias-variance trade-off

◦ MC return is unbiased, but has higher variance since it relies on many random steps

◦ TD target is biased, but has lower variance since it only relies on the next step

◦ The MC error can be written as a sum of TD errors:

Gt − V (st) = rt+1 + γGt+1 − V (st) + γV (st+1)− γV (st+1)
= δt + γ(Gt+1 − V (st+1))

= δt + γδt+1 + γ2(Gt+2 − V (st+2))
= · · ·

=
∞∑

k=t

γk−tδk

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 52/ 60



Multiple-step TD learning

Definition (n-step return)
Let T be the termination time step in a given episode, γ ∈ [0, 1].

G
(1)
t = rt+1 + γV (st+1) TD(0)

G
(2)
t = rt+1 + γrt+2 + γ2V (st+2) (two-step return)

G
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n) (n-step return)

G
(∞)
t = rt+1 + γrt+2 + · · ·+ γT −t−1rT MC

Note that G
(n)
t = G

(∞)
t if t + n ≥ T .

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 53/ 60



Multiple-step TD learning

Figure: [19]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 54/ 60



Multiple-step TD learning

Multi-step TD learning:

V (st)← V (st) + αt

(
G

(n)
t − V (st)︸              ︷︷              ︸

n-step TD error

)

Observations: ◦ Unifies and combines TD(0) and MC: n = 1 recovers TD(0) and n =∞ recovers MC.

◦ Trades-off bias and variance.

◦ However, we need to observe rt+1, · · · , rt+n.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 55/ 60



Numerical example: Longer random walk

A E B D C 
0 0 0 0 0 1 

Start 

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.1

0.2

0.3

0.4

0.5

0.6

RM
S 
er
ro
r

n = 1
n = 2
n = 4
n = 8
n = 16
n = 32
n = 64
n = 128
n = 256
n = 512

Figure: Performance of n-step TD methods as a function of α, for various values of n, on a 19-state random walk task. [18]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 56/ 60



Further extension: TD(λ) with eligibility trace

λ-return (weighted average of all n-step returns)

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t

TD(λ)

V (st) ← V (st) + α
[
Gλ

t − V (st)
]

Figure: [19]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 57/ 60



Further extension: TD(λ) with eligibility trace

TD(λ)

V (st) ← V (st) + α
[
Gλ

t − V (st)
]

Observations: ◦ λ = 0 reduces to TD(0); λ = 1 reduces to MC.

◦ Can be efficiently implemented:

V (s) ← V (s) + αδtet(s)
et(s) = γλet−1(s) + 1{st = s}

◦ The term et(s) =
∑t

k=0 γt−k1{st = s} is called the eligibility trace.

◦ Converge faster than TD(0) when λ is appropriately chosen.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 58/ 60



State-Action-Reward-State-Action for Q-value estimation

◦ In VI or PI, we often require the evaluation of Q-function to compute the greedy policy or optimal policy.

◦ How do we estimate Qπ?

SARSA [17]
for each step do

Observe (st, at, rt, st+1, at+1) following π
Update Q(st, at)← Q(st, at) + αt(rt + γQ(st+1, a+1)−Q(st, at))

end for

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 59/ 60



Summary: Model-free prediction

Methods DP MC TD(0)

Model knowledge Need No need No need

Bootstrap Yes No Yes

When do updates After next step After whole episode After next step

Use Markov property Yes No Yes

Bias - Unbiased Biased

Variance - Big Small

Convergence rate Linear rate - O(1/
√

t) [20]

Reference: [19]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 60/ 60



Wrap Up

◦ PI and VI are dynamic programming methods applicable when the transition matrix is known.

◦ The occupancy measure is a useful quantity that will be used throughout the course.

◦ Monte Carlo methods are used to estimate value function when the transition matrix is unknown.

◦ Monte Carlo methods are an instance of stochastic approximation.

◦ TD is an application of dynamic programming when the transition matrix is unknown.

◦ Next week is about Linear Programming for RL !

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 61/ 60



Supplementary material

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 1/ 15



Existence of an optimal policy (proof)

Proof Sketch
Assume starting from (s0, a0, r0, s1) = (s, a, r, s′),

1. Define “offset" policy π̃(at = a |ht) := π(at+1 = a | (s0, a0) = (s, a), ht), Markov property implies

E

[
∞∑

t=1

γ
t
r(st, at) | (s0, a0, r0, s1) = (s, a, r, s

′), π

]
= γV

π̃(s
′)

2. With all (s0, a0, r0) = (s, a, r), the set {π̃ |Π} will just be Π itself
3. Show that the optimal value from s1 onward is independent of (s0, a0, r0) = (s, a, r),

max
π∈Π

E

[
∞∑

t=1

γ
t
r(st, at) | (s0, a0, r0, s1) = (s, a, r, s

′), π

]
= γ max

π∈Π
V

π̃(s
′) = γ max

π∈Π
V

π(s
′) = γV

⋆(s
′)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 15



Existence of an optimal policy (proof)

Proof Sketch (cont.)

4. Let π(s) = arg max
a∈A

max
π′∈Π

Qπ′ (s, a), show this deterministic and randomized policy is optimal

V
∗(s0) = max

π′∈Π
E

[
∞∑

t=0

γ
t
r(st, at) | s0 = s, π

]
= max

π′∈Π
E

[
r(s0, a0) +

∞∑
t=1

γ
t
r(st, at) | π

]

= max
π′∈Π

E

[
r(s0, a0) + E

[
∞∑

t=1

γ
t
r(st, at) | (s0, a0, r0, s1), π

]]
≤ max

π′∈Π
E

[
r(s0, a0) + V

⋆(s1)
]

⇐= Step 3 above

= E
[

r(s0, a0) + V
⋆(s1) | π

]
⇐= Definition of π above

(8)

5. V ⋆(s0) ≤ E [r(s0, a0) + V ⋆(s1) | π] ≤ E
[

r(s0, a0) + γr(s1, a1) + γ2V ⋆(s1) | π
]

≤ · · · ≤ V π(s0), so
Vπ = V⋆, i.e., the proposed π is optimal.

□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 3/ 15



Policy improvement theorem (proof)

Theorem (Policy Improvement)
If a (deterministic) policy π′ satisfies that,

Qπ(s, π′(s)) ≥ V π(s) ∀ s ∈ S, (9)

then V π′ (s) ≥ V π(s) for any s ∈ S.

Proof.
Follow the property, for any s ∈ S, (denote s′ ∼ P (·|s, π′(s)) as s′ ∼ π′)

V π(s) ≤ Qπ(s, π′(s)) = Eπ′
[
r(s0, π′(s0)) + γV π(s1)| s0 = s

]
≤ Eπ′

[
r0 + γQπ(s1, π′(s1)) | s0 = s

]
≤ Eπ′ [r0 + γr1 + γV π(s1) | s0 = s]
≤ · · ·

≤ Eπ′
[
r0 + γr1 + γ2r2 + · · · | s0 = s

]
= V π′

(s)

(10)

□

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 15



POMDPs

Partial observable Markov decision processes (POMDPs)
▶ S is the set of all possible states
▶ A is the set of all possible actions
▶ P(s′|s, a): S ×A → S is the transition model
▶ Ω is the set of observations: o ∈ Ω.
▶ O is a set of conditional observation probabilities: O(o|s′, a).
▶ r(s, a): S ×A → R is the reward function
▶ µ is the initial state distribution: s0 ∼ µ ∈ ∆(S)
▶ γ is the discount factor: γ ∈ [0, 1]

MDP vs POMDP: ◦ POMDPs are flexible: We do not have to have perfect information about the states.

◦ POMDPs are closer to the real world.
Example: see a baby crying but do not know the true state (hungry, sleepy, etc).

◦ MDPs assume perfect knowledge of the states.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 15



POMDPs
◦ When we do not observe the actual states, we construct the so-called belief states vector.

Definition (Belief states)
A belief state vector bt is a distribution over states at time t that estimates the state distribution given the
observation and the action history ht = {o0, a0, . . . , at−1, ot}, i.e., P(st = s|ht):

bt(s) := P(st = s|ht).

Remarks: ◦ Via the Bayes rule, the belief states must satisfy:

P(st = s|ht) =
O(ot|st, at−1, ht−1)P(st|at−1, ht−1)

P(ot|at−1, ht−1)

=
O(ot|st, at−1, ht−1)

∑
st−1

P(st|st−1, at−1)P(st−1|ht−1)∑
st

O(ot|st, at−1, ht−1)
∑

st−1
P(st|st−1, at−1)P(st−1|ht−1)

◦ As a result, we have a recursion for the conditional probability P(st = s|ht).

◦ We will represent this recursion via a “belief operator.”

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 15



The belief operator

◦ We can concisely represent the recursion on bt(s) using the belief operator U : ∆(S)× Ω×A → ∆(S):

bt+1(s′) = U(bt; a, o)(s′) =
O(o|s′, a)

∑
s∈S

P(s′|s, a)bt(s)∑
s′ O(o|s′, a)

∑
s∈S

P(s′|s, a)bt(s)

Remarks: ◦ The expected (non-stationary) reward now also depends on our current belief state:

rt(a) =
∑
s∈S

r(a, s)bt(s).

◦ We will focus more on MDPs and how to solve them optimally.

◦ Tools for MDPs translate readily to POMDPs once we have an estimate of bt(s).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 15



Numerical example: Hex World

◦ Traverse a tile map to reach a goal state

◦ Each cell in the tile map represents a state; action is a move in any of the 6 directions

◦ Taking any action in certain cells gives a specified reward and transports to a terminal state

Figure: Top row shows the base problem setup and colors hexes with terminal rewards. Bottom row shows an optimal policy for
each problem and colors the expected value. Arrows indicate the action to take in each state. [8]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 15



Numerical example: Value iteration

◦ Initialized with the east-moving policy

Figure: Value iteration for Hex World. [8]
Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 15



Numerical example: Policy iteration

◦ Initialized with the east-moving policy

◦ An optimal policy is obtained (the algorithm converges) in four iterations

Figure: Policy iteration for Hex World. [8]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 15



References I

[1] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun.
Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.
32

[2] T. Cormen, C. Leiserson, R. Rivest, C. Stein, et al.
Introduction to algorithms, volume 2.
MIT press Cambridge, 2001.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative Adversarial Networks.
ArXiv e-prints, June 2014.
67

[4] Caglar Gulcehre, Sergio Gómez Colmenarejo, Jakub Sygnowski, Thomas Paine, Konrad Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu,
Nando de Freitas, et al.
Addressing extrapolation error in deep offline reinforcement learning.
2020.
64

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition.
pages 770–778, 2016.
67

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 15



References II

[6] Sepp Hochreiter and Jürgen Schmidhuber.
Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.
67

[7] Arthur Jacot, Franck Gabriel, and Clément Hongler.
Neural tangent kernel: Convergence and generalization in neural networks.
In Advances in neural information processing systems, pages 8571–8580, 2018.
67

[8] Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray.
Algorithms for Decision Making.
MIT press, 2022.
63, 90, 91, 92

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.
67

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning.
Nature, 521(7553):436–444, 2015.
67

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 15



References III

[11] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu.
Offline reinforcement learning: Tutorial, review, and perspectives on open problems.
arXiv preprint arXiv:2005.01643, 2020.
65

[12] Martin L Puterman.
Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.
32

[13] Satinder Singh Richard and Richard C. Yee.
An upper bound on the loss from approximate optimal-value functions.
In Machine Learning, pages 227–233, 1994.
52

[14] Bruno Scherrer.
Improved and generalized upper bounds on the complexity of policy iteration.
Mathematics of Operations Research, 41(3):758–774, 2016.
52, 53, 54, 55

[15] Bruno Scherrer, Victor Gabillon, Mohammad Ghavamzadeh, and Matthieu Geist.
Approximate modified policy iteration.
arXiv preprint arXiv:1205.3054, 2012.
52

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 13/ 15



References IV

[16] Bernhard Schölkopf and Alexander J. Smola.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, MA, USA, 2001.
67

[17] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine learning, 38(3):287–308, 2000.
81

[18] Richard S. Sutton and A. G. Barto.
Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.
73, 78

[19] Richard S Sutton and Andrew G Barto.
Reinforcement learning: An introduction.
MIT press, 2018.
6, 76, 79, 82

[20] V.B. Tadic.
On the almost sure rate of convergence of linear stochastic approximation algorithms.
IEEE Transactions on Information Theory, 50(2):401–409, 2004.
82

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 15



References V

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need.
2017.
67

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 15


	Markov Decision Processes (MDPs)
	Bellman Equations and Bellman Optimality
	Value Iteration
	Policy Iteration
	Summary
	Overview of reinforcement learning
	Model-free prediction
	Monte Carlo method
	Temporal difference learning
	Extension: Multiple-step TD, TD(), SARSA

	Appendix

