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Exercise 1. a) In this case,

P(1)({X1 ∈ B1, X2 ∈ B2}) = µ(B1) · µ(B2) = P(1)({X1 ∈ B1}) · P(1)({X2 ∈ B2})

The random variables X1 and X2 are therefore independent and identically distributed (i.i.d.).

b) In this case,
P(2)({X1 ∈ B1, X2 ∈ B2}) = µ(B1 ∩B2)

Note first that whenever B1 ∩ B2 = ∅, the above probability is zero, so it can never be the
case that X1, X2 take values simultaneously in disjoint sets B1, B2. As this must hold for any
disjoint sets B1, B2, it holds in particular for non-intersecting intervals ]a1, b1[, ]a2, b2[. This is
to say that P(2)({(X1, X2) ∈ R}) = 0 for any open rectangle R ⊂ R2 not touching the diagonal
∆ = {(x1, x2) ∈ R2 : x1 = x2}. From this, one deduces that P(2)({(X1, X2) ∈ B}) = 0 for any
open set B not touching the diagonal, which further implies that P(2)({(X1, X2) ∈ ∆}) = 1, i.e.,
that P(2)({X1 = X2}) = 1.

NB: Please note that in both cases, the two random variables X1, X2 have the same distribution,
but in one case, they are independent, while in the other, they are the same random variable.

Exercise 2. By the formula seen in class, we have:

pX1+X2(t) =

∫
R
dx1 pX1(x1) pX2(t− x1) =

∫
R
dx1

1√
2π

exp(−x21/2)
1√
2π

exp(−(t− x1)
2/2)

=
1√
2π

exp(−t2/2)

∫
R
dx1

1√
2π

exp(tx1 − x21)

=
1√
2π

exp(−t2/2)

∫
R
dx1

1√
2π

exp(−(x1 − t/2)2) exp(t2/4)

=
1√
4π

exp(−t2/4)

∫
R
dx1

1√
π

exp(−(x1 − t/2)2)

The integral on the right-hand side is equal to 1, as the integrand is the pdf of a N (t/2, 1/2) random
variable, so we remain with

pX1+X2(t) =
1√
4π

exp(−t2/4), t ∈ R

which shows that X1 +X2 is a N (0, 2) random variable.

Exercise 3. a) Yes. Because Y N (0, 1) and Z is independent of Y , ZY ∼ N (0, 1); then, the sum
of two independent Gaussians random variables is also Gaussian.

b) No. For example, P({X + ZY ≥ 0})P({Y ≥ 0}) = 1/4 by symmetry, but

P({X + ZY ≥ 0, Y ≥ 0}) = 1

2
P({X + Y ≥ 0, Y ≥ 0}) + 1

2
P({X − Y ≥ 0, Y ≥ 0})

= P({X ≥ Y, Y ≥ 0}) + 1

2
P({|X| ≤ Y, Y ≥ 0}) > 1
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Exercise 4. a) Yes, Y2 and Y3 are independent. By inspection,

P(Y2 = i, Y3 = j) =
1

6
=

1

2
· 1
3

= P(Y2 = i)P(Y3 = j)

for all i ∈ {0, 1} and j ∈ {0, 1, 2}.

b) Let A0 = {2, 4, 6} and A1 = Ac
0 = {1, 3, 5}. Then, the σ-field generated by Y2 is the σ-field

generated by the atoms A0, A1. That is, σ(Y2) = {∅, {1, 3, 5}, {2, 4, 6},Ω}.

Likewise, let B0 = {3, 6}, B1 = {1, 4}, and B2 = {2, 5}. The σ-field generated by Y3 is the σ-field
generated by the atoms B0, B1, B2.
That is, σ(Y3) = {∅, {3, 6}, {2, 5}, {1, 4}, {2, 3, 5, 6}, {1, 2, 4, 5}, {1, 3, 4, 6},Ω}.

c) Yes to both. The random variables Y2, Y3, Y5 are pairwise independent and jointly independent.
Thus, it is sufficient to show that they are jointly independent. This can be done by consider-
ing the σ-fields generated by each random variable and checking the definition of independence.
Alternatively, we can show from definition 3.7 in lecture notes that three random variables are
jointly independent if and only if the pmf factorizes (in the same way as we did this with pairwise
independence). Thus, in this case

P(Y2 = i, Y3 = j, Y5 = k) =
1

30
=

1

2
· 1
3
· 1
5

= P(Y2 = i)P(Y3 = j)P(Y5 = k)

for all i ∈ {0, 1}, j ∈ {0, 1, 2}, and k ∈ {0, 1, 2, 3, 4}. The first equation follows from the fact that
a unique number in {1, . . . , 30} has remainders (i, j, k) when divided by 2, 3, and 5, respectively.
This can be seen by inspection, or more generally, by the Chinese Remainder Theorem.
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