Solutions to Homework 2

Exercise 1. a) 1. true, 2. false, 3. false, 4. true b) 5. false, 6. true, 7. false, 8. true.

Exercise 2. a) We have
\[
P(\{Y_n \leq t\}) = 1 - P(\{Y_n > t\}) = 1 - P(\{\min\{X_1, \ldots, X_n\} > t\}) = 1 - P(\bigcap_{j=1}^n \{X_j > t\})
\]
\[= 1 - \prod_{j=1}^n P(\{X_j > t\}) = 1 - P(\{X_1 > t\})^n
\]
where the last two equalities follow from the assumption that the X's are i.i.d. Therefore,
\[
P(\{Y_n \leq t\}) = 1 - (\exp(-t))^n = 1 - \exp(-nt)
\]
b) Under the assumptions made, n is large and t is such that $nt \ll 1$, so using Taylor’s expansion $\exp(-x) \simeq 1 - x$, we obtain
\[
P(\{Y_n \leq t\}) \simeq 1 - (1 - nt) = nt \quad \text{while} \quad P(\{X_1 \leq t\}) = 1 - \exp(-t) \simeq t
\]
and therefore $P(\{Y_n \leq t\}) \simeq nP(\{X_1 \leq t\})$.

c) We have similarly
\[
P(\{Z_n \geq t\}) = 1 - P(\{Z_n < t\}) = 1 - P(\{\max\{X_1, \ldots, X_n\} < t\}) = 1 - P(\bigcap_{j=1}^n \{X_j < t\})
\]
\[= 1 - \prod_{j=1}^n P(\{X_j < t\}) = 1 - P(\{X_1 < t\})^n = 1 - (1 - \exp(-t))^n
\]
d) Under the assumptions made, n is large and t is such that $n\exp(-t) \ll 1$, so using again the same Taylor expansion as above, we obtain
\[
P(\{Z_n \geq t\}) \simeq 1 - (1 - n\exp(-t)) = n\exp(-t) \quad \text{while} \quad P(\{X_1 \geq t\}) = \exp(-t)
\]
and therefore $P(\{Z_n \geq t\}) \simeq nP(\{X_1 \geq t\})$.

Exercise 3.

a) No. Take for example $\Omega = \{1, 2, 3\}$, $X(\omega) = \omega$ and $Y(\omega) = 2$ for every $\omega \in \Omega$. Then $\mathcal{G} = \sigma(X) \cap \sigma(Y) = \sigma(Y) = \{\emptyset, \Omega\}$, but $\{X \leq Y\} = \{\omega \in \Omega : X(\omega) \leq Y(\omega)\} = \{1, 2\} \notin \mathcal{G}$.

b) No. Take for example $\Omega = \{1, 2\}^2$, $X(\omega) = \omega_1$ and $Y(\omega) = -\omega_2$. Then $\{X + Y = 0\} = \{(1, 1), (2, 2)\}$, and so $\sigma(X + Y) = \sigma(\{(1, 1), (2, 2)\}, \{(1, 2), (2, 1)\}) \neq \sigma(X, Y) = \mathcal{P}(\Omega)$ (in addition, note that the fact that X and Y are independent does not play a role here).

c) No. Take for example $X \sim \mathcal{N}(0, 1)$, whose pdf $p_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$ is continuous. Then $Y = X^2$ has pdf
\[
p_Y(y) = \begin{cases}
\frac{1}{\sqrt{2\pi y}} \exp(-y/2) & \text{if } y \geq 0 \\
0 & \text{if } y < 0
\end{cases}
\]
which is discontinuous in $y = 0$.

1
d) Yes. Actually, the map \(t \mapsto t^3 + 3t^2 + 3t + 1 = (t + 1)^3 \) is non-decreasing and going from \(-\infty\) to \(+\infty\), thus the properties of the cdf \(F \) are preserved for \(G \).

Exercise 4. a) Here are 3 possible subsets \(A_1, A_2, A_3 \) of \(\Omega = \{1, 2, 3, 4\} \): \(A_1 = \{1, 2\}, A_2 = \{1, 3\} \) and \(A_3 = \{1, 4\} \). We check that

\[
P(A_j) = \frac{1}{2} \quad \forall j \quad \text{and} \quad P(A_j \cap A_k) = \frac{1}{4} = P(A_j) \cdot P(A_k) \quad \forall j \neq k
\]

but

\[
P(A_1 \cap A_2 \cap A_3) = \frac{1}{4} \neq \frac{1}{8} = P(A_1) \cdot P(A_2) \cdot P(A_3)
\]

b) Here are 3 possible subsets \(A_1, A_2, A_3 \) of \(\Omega = \{1, 2, 3, 4, 5, 6\} \): \(A_1 = \{1, 2, 3\}, A_2 = \{3, 4, 5\} \) and \(A_3 = \{1, 3, 4, 6\} \). We check that

\[
P(A_1 \cap A_2 \cap A_3) = \frac{1}{6} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} = P(A_1) \cdot P(A_2) \cdot P(A_3)
\]

but

\[
P(A_1 \cap A_2) = \frac{1}{6} \neq \frac{1}{4} = P(A_1) \cdot P(A_2)
\]

c) Using the assumptions made, we check successively (the roles of \(A_1, A_2, A_3 \) being permutable):

\[
P(A_1 \cap A_2 \cap A_3^c) = P(A_1 \cap A_2) - P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) - P(A_1) \cdot P(A_2) \cdot P(A_3)
\]

\[
= P(A_1) \cdot P(A_2) \cdot (1 - P(A_3)) = P(A_1) \cdot P(A_2) \cdot P(A_3)
\]

\[
P(A_1 \cap A_2^c \cap A_3^c) = P(A_1 \cap A_2) - P(A_1 \cap A_2 \cap A_3^c) = P(A_1) \cdot P(A_2) - P(A_1) \cdot P(A_2) \cdot P(A_3^c)
\]

\[
= P(A_1) \cdot (1 - P(A_2)) \cdot P(A_3^c) = P(A_1) \cdot P(A_2^c) \cdot P(A_3^c)
\]

\[
P(A_1^c \cap A_2^c \cap A_3^c) = P(A_1^c) \cdot P(A_2^c) - P(A_1 \cap A_2 \cap A_3^c) = P(A_1^c) \cdot P(A_2^c) - P(A_1) \cdot P(A_2^c) \cdot P(A_3^c)
\]

\[
= (1 - P(A_1)) \cdot P(A_2^c) \cdot P(A_3^c) = P(A_1) \cdot P(A_2^c) \cdot P(A_3^c)
\]

Exercise 5. a) No. Even though it is easily shown that \(Y \) and \(Z \) are uncorrelated random variables (i.e., that their covariance is zero), they are not independent. Here is a counter-example: \(P(\{Y = +2\}) = P(\{Z = +2\}) = 1/4 \), but \(P(\{Y = +2, Z = +2\}) = 0 \). So we have found two Borel sets \(B_1 = \{+2\} \) and \(B_2 = \{+2\} \) such that

\[
P(\{Y \in B_1, Z \in B_2\}) \neq P(\{Y \in B_1\}) \cdot P(\{Z \in B_2\})
\]

b) Yes. In this case again, one checks easily that \(Y \) and \(Z \) are uncorrelated. Let us now compute their joint pdf: the joint pdf of \(X_1 \) and \(X_2 \) is given by

\[
p_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2} \right)
\]

Making now the change of variables \(y = x_1 + x_2 \), \(z = x_1 - x_2 \), or equivalently \(x_1 = \frac{y+z}{2}, x_2 = \frac{y-z}{2} \), we obtain

\[
x_1^2 + x_2^2 = \left(\frac{y+z}{2} \right)^2 + \left(\frac{y-z}{2} \right)^2 = \frac{y^2 + z^2}{2}
\]
and the Jacobian of this linear transformation is given by

$$ J(y, z) = \det \begin{pmatrix} \frac{\partial x_1}{\partial y} & \frac{\partial x_1}{\partial z} \\ \frac{\partial x_2}{\partial y} & \frac{\partial x_2}{\partial z} \end{pmatrix} = \det \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} = -\frac{1}{2} $$

so that

$$ p_{Y, Z}(y, z) = p_{X_1, X_2}(x_1(y, z), x_2(y, z)) \cdot |J(y, z)| = \frac{1}{4\pi} \exp \left(-\frac{y^2 + z^2}{4} \right) $$

from which we deduce that Y and Z are independent $\mathcal{N}(0, 2)$ random variables.