Homework 2

Exercise 1. a) Which of the following are cdfs?

1. $F_{1}(t)=\exp \left(-e^{-t}\right), t \in \mathbb{R}$
2. $F_{2}(t)=\frac{1}{1-e^{-t}}, t \in \mathbb{R}$
3. $F_{3}(t)=1-\exp (-1 /|t|), t \in \mathbb{R}$
4. $F_{4}(t)=1-\exp \left(-e^{t}\right), t \in \mathbb{R}$
b) Let now F be a generic cdf.

Which of the following functions are guaranteed to be also cdfs?
5. $F_{5}(t)=F\left(t^{2}\right), t \in \mathbb{R}$
6. $F_{6}(t)=F(t)^{2}, t \in \mathbb{R}$
7. $F_{7}(t)=F(1-\exp (-t)), t \in \mathbb{R} \quad$ 8. $F_{8}(t)=\left\{\begin{array}{ll}1-\exp (-F(t) /(1-F(t))) & \text { if } F(t)<1 \\ 1 & \text { if } F(t)=1\end{array} \quad t \in \mathbb{R}\right.$

Exercise 2. Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \mathcal{E}(1)$ random variables (i.e., they are independent and identically distributed, all with the exponential distribution of parameter $\lambda=1$).
a) Compute the cdf of $Y_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$.
b) How do $\mathbb{P}\left(\left\{Y_{n} \leq t\right\}\right)$ and $\mathbb{P}\left(\left\{X_{1} \leq t\right\}\right)$ compare when n is large and t is such that $t \ll \frac{1}{n}$?
c) Compute the $c d f$ of $Z_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
d) How do $\mathbb{P}\left(\left\{Z_{n} \geq t\right\}\right)$ and $\mathbb{P}\left(\left\{X_{1} \geq t\right\}\right)$ compare when n is large and t is such that $t \gg \log (n)$?

Exercise 3.*

a) Let X, Y be two random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G}=\sigma(X) \cap \sigma(Y)$ [fact: it can be shown that \mathcal{G} is a σ-field]. Is it true that $\{X \leq Y\} \in \mathcal{G}$?
b) Let X, Y be two independent random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Is it always true that $\sigma(X+Y)=\sigma(X, Y)$?
c) Let X be a continuous random variable whose $p d f p_{X}$ is a continuous function on \mathbb{R}. Let now $Y=X^{2}$. Is it always true that the pdf p_{Y} is also a continuous function on \mathbb{R} ?
d) Let F be a generic cdf. Is it always true that the function $G: \mathbb{R} \rightarrow[0,1]$ defined as

$$
G(t)=F\left(t^{3}+3 t^{2}+3 t+1\right), \quad t \in \mathbb{R}
$$

is also a cdf?

Exercise 4. Let $n \geq 1, \Omega=\{1,2, \ldots, n\}, \mathcal{F}=\mathcal{P}(\Omega)$ and \mathbb{P} be the probability measure on (Ω, \mathcal{F}) defined by $\mathbb{P}(\{\omega\})=\frac{1}{n}$ on the singletons and extended by additivity to all subsets of Ω.
a) Consider first $n=4$. Find three subsets $A_{1}, A_{2}, A_{3} \subset \Omega$ such that

$$
\mathbb{P}\left(A_{j} \cap A_{k}\right)=\mathbb{P}\left(A_{j}\right) \cdot \mathbb{P}\left(A_{k}\right) \quad \forall j \neq k \quad \text { but } \quad \mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right) \neq \mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}\right)
$$

b) Consider now $n=6$. Find three subsets $A_{1}, A_{2}, A_{3} \subset \Omega$ such that

$$
\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}\right) \quad \text { but } \quad \exists j \neq k \text { such that } \mathbb{P}\left(A_{j} \cap A_{k}\right) \neq \mathbb{P}\left(A_{j}\right) \cdot \mathbb{P}\left(A_{k}\right)
$$

c) Consider finally a generic probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and three events $A_{1}, A_{2}, A_{3} \in \mathcal{F}$ such that

$$
\mathbb{P}\left(A_{j} \cap A_{k}\right)=\mathbb{P}\left(A_{j}\right) \cdot \mathbb{P}\left(A_{k}\right) \quad \forall j \neq k \quad \text { and } \quad \mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}\right)
$$

Show that A_{1}, A_{2}, A_{3} are independent according to the definition given in the course.

Exercise 5. Let X_{1}, X_{2} be two i.i.d. random variables such that $\mathbb{P}\left(\left\{X_{i}=+1\right\}\right)=\mathbb{P}\left(\left\{X_{i}=-1\right\}\right)=$ $1 / 2$ for $i=1,2$. Let also $Y=X_{1}+X_{2}$ and $Z=X_{1}-X_{2}$.
a) Are Y and Z independent?
b) Same question with X_{1}, X_{2} i.i.d. $\sim \mathcal{N}(0,1)$ random variables (use here the change of variable formula in order to compute the joint distribution of Y and Z).

