
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 1

Reinforcement Learning and SARSA

Objectives for Lecture RL1 (Part 1-3)

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions, states and rewards

- Convergence in expectation, online and batch.

Part 1: Examples of Reward-based Learning

Reading:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018)

Chapters: 1.1-1.4; 2.1-2.6; 3.1-3.5; 6.4

Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4; 2.1-2.6; 3.1-3.5; 6.4

2
2

No labeled data?

REPETITION: Artificial Neural Networks for action learning

Replaced by:

‘Value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence

Previous slide. (already shown before the break)

How does a human learn to play table tennis: How does a child learn to play the

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the

players during the learning phase. Rather the player ‘discovers’ good movements

by rather coarse feedback. For example, the ball in table tennis does not land on

the table as it should. That is bad (negative feedback). The ball has a great spin

so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action,

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the

goodie for the dog, or just the feeling ‘now I did well’ for humans.

Reward information is available in the brain

Neuromodulator dopamine:

Signals “reward minus expected reward”

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’

Previous slide.

Inside the brain, reward information is transmitted by the neuromodulator

dopamine. Neurons that use dopamine as their chemical transmission signal are

situated in nuclei below the cortex and have cables (axons) that reach out to vast

areas of the brain.

As we will see later, neurons that communicate with the neuromodulator

dopamine transmit a generic success signal that is not just reward, but something

like ‘reward minus expected reward’.

To conclude, reward information is available throughout the brain.

Examples of reinforcment learning

Middle bar: shifted left or shifted right?

Observers get better at seeing

the shift of the middle bar

Feedback:

tone for wrong response

Tartaglia,Aberg,Herzog 2009

Min.

shift

Previous slide (This example is not shown in class)

Let us look at a few additional examples, beyond table tennis.

Humans can get, by practice and feedback, better at recognizing a visual pattern

with three bars. The task is to distinguish cases where the middle bar is shifted to

the left from those where it is shifted to the right.

Bottom right:

The minimal shift that is just recognizable decreases over time (1 block = 1

practice session) indicating learning.

The feedback signal is just right or wrong.

Examples of reinforcement learning: animal conditioning

Previous slide. (already shown before the break)

If you put a rat into an environment it will wander around. Suppose that, at some

place, it discovers a food source hidden below the sand of the surface.

After a couple of trials it will go straight to the location of the food source which

implies that it has learned the appropriate sequence of actions in the environment

to find the food source.

Examples of reinforcement learning: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to

get out of the cold water)

Time to find platform

10 trials

Morris Water Maze

Previous slide. (This example is not shown in class)

Actual experiments for location learning are often performed in a Morris water

maze. In the maze, there are 4 starting points and one target location which is a

platform hidden (in milky water) just below the water surface. The rat does not like

to swim in cold water and therefore tries to find the platform.

After a few trials it swims straight to the platform.

Bottom right: the time to reach the platform decreases over trials, indicating

learning.

Chess Artificial neural network

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats Lee Sedol

Go

REPETITION: Deep reinforcement learning

Previous slide.

In chess a neural network trained by reinforcement learning discovers winning

strategies by playing against itself. Similarly, a neural network playing Go against

itself learns to play at a level so as to beat one of the world champions.

The aim of the class is to arrive at Deep Reinforcement Learning (Deep RL):

Today we start with (standard) RL, in a few weeks we turn to deep networks, and

in May we will turn to Deep RL.

Deep reinforcement learning

Network for choosing action

2nd output for value of state:

probability to win

input

output

action:
Advance king

Learning by success signal

- change connections

aim:

- choose next action to win

aim for value unit:

- predict value of current

position

Previous slide. (already shown before the break)

At the end of this semester, you will be able to understand the algorithms and

network structure used to achieve these astonishing performances. Important are

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we

can loosely define the value as the probability to win, or the ‘average reward’ that

you can get starting from this state.

The input is a representation of the present state of the game.

Details will become clear toward the end of the semester; at the moment the aim

is just to give you a flavor of the high-level concepts.

Deep Reinforcement Learning:

Control a dynamic system (example of past minproject)

advance push

left

actions

value

Example: Play Pong (Atari game)

Previous slide.

In the miniproject training will be based on reward: successful behavior of the

simulated agent will give positive rewards.

Quiz: Rewards in Reinforcement Learning

[] Reinforcement learning is based on rewards

[] Reinforcement learning aims at optimal action choices

[] In chess, the player gets an external reward after every move

[] In table tennis, the player gets a reward when he makes a point

[] A dog can learn to do tricks if you give it rewards at appropriate

moments

[x]

[x]

[]

[x]

[x]

Previous slide. Your notes (already shown before the break)

.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 1

Reinforcement Learning and SARSA

Part 2: Elements of Reinforcement Learning

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

Previous slide.

We now start with the formalization of reinforcement learning

REPETITION: Elements of Reinforcement Learning:

-states

-actions

-rewards

Previous slide.

Reinforcement learning needs states, actions, and rewards.

Elements of Reinforcement Learning:

- discrete states

- discrete actions

- sparse rewards

Previous slide (already shown before the break)

.

Note that, for standard formulations of Reinforcement Learning Theories this

(normally) implies discretizing space and actions.

We will study continuous-space formulations only next week.

REPETITION: Elements of Reinforcement Learning:

- discrete states:

old state

new state

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′
𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎1, 𝑎2 … 𝑎𝐴

a2

- current action: 𝑎𝑡

Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the

transition (capital R with indices identifying the transition) from the actual reward

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero

rewards, except a single ‘goal’ state at the end.

REPETITION: States in Reinforcement Learning:

- discrete states:

starting state

arrival state

𝑠

𝑠′

- current state: 𝑠𝑡

𝑠 𝑠′

state = current configuration/well-defined situation

= generalized ‘location’ of actor in environment

a

Previous slide.

What are these discrete states?

Loosely speaking a state is the current configuration that uniquely describes the

momentary situation. We can think of the generalized ‘location’ of the actor in the

environment

To get acquainted with this, let us look at an example.

reward if tip above line

From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

States?

 discretize!

Suppose 5 states per dimension,

How many states in total?

[] 5

[] 25

[] 125

[] 625

3 actions: = no torque,

= torque +1 at elbow,

= torque -1 at elbow

a1

a2

a3

5x5x5x5=625

Previous slide.

The aim of the acrobat is to move the tip above the blue line. To achieve this

torque can be applied at the ‘elbow’ link. The second link is the ‘shoulder’.

There are three possible actions.

But what are the states? How many states do we have?

From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions

400th episode: short sequence of ‘smart’ actions

Previous slide.

An episode finishes if the target is reached. Over time episodes get shorter and

shorter indicating that the acrobat has discovered (via reinforcement learning) a

smart sequence of actions so as to reach the target (i.e., move the tip above the

reference line)

From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

after 400 episodes

Previous slide.

One example of an action sequence, after learning, is shown.

Summary: Elements of Reinforcement Learning

- discrete actions:

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

𝑎

- current actual reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

There can be MANY states

Often need to discretize first

(later we try to model in continuum)

𝑎

Previous slide.

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. For the moment we

also think of the states as discrete (but next week we will go to continuous state

space)

Quiz: Reinforcement Learning for backgammon

From Book:

Sutton and Barto

Game position =

discrete states!

Suppose 2 pieces per player,

How many states in total?

[] 100<n<500

[] 500<n<5000

[] 5 000<n<50 000

[] n>50 000

N>24x24x23x23>23x23x23x23>250 000

Previous slide.

Backgammon game. There are 24 fields on the board. Players have several

pieces. Pieces are protected if there are two of the same color on the same field.

To make it simply, we now consider that both players have two pieces each left.

How many different states are there in total?

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 1

Reinforcement Learning and SARSA

Part 3: One-step horizon (bandit problems)

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)

Previous slide.

We start with the simplest discrete example: the game is over and reward is given

after a single step.

coins

buttons

Slot Machine

3-armed bandid

action=button press

One-step horizon games (bandit)

Previous slide.

The standard example is a multi-armed bandit, or slot machine: you have to

choose between a few actions, and once you have pressed the button you can

just wait and see whether you get reward or not.

One-step horizon games 𝑠

𝑠′

a1

Blackboard1:

Q-valuesQ-value:

Expected reward for

action a starting from s Q(s,a1)

Q(s,a)

Previous slide.

One of the most central notion in reinforcement learning is the Q-value.

Q(s,a) has two indices: you start in state s and take action a.

The Q-value Q(s,a) is (an estimate of) the mean expected reward that you will get

if you take action a starting from state s.

One-step horizon games Blackboard1:

Q-values

Your notes.

One-step horizon games: Q-value

𝑄 𝑠, 𝑎 =

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:

Previous slide.

is the probability that you end up in a specific state s’ if you take action

a1 in state s.

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a) is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1

Optimal policy (greedy)

take action a* with

Q(s,a*) ≥ Q(s,aj)

other actions

𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)

a*= argmaxa [Q(s,a)]

optimal action:

Suppose all Q-values are known:

Optimal policy is also called ‘greedy policy’

=6 =2 =5

Previous slide.

And once you have the Q-values it is easy to choose the optimal action:

Just take the one with maximal Q-value.

One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

BUT: we normally do not know the Q-values

 estimate by trial and error

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Q(s,a3)

Previous slide.

The only remaining problem is that we do not know the Q-values, because the

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times

– the casino will love this!).

Teaching monitoring – monitoring of understanding

[] today, up to here, at least 60% of material was new to me.

[] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture.

Previous slide.

Teaching monitoring – feedback for the teacher.

Exercise 1 (from earlier session today)

𝑠

𝑠′

a1 a2 a3
𝑄 𝑠, 𝑎 =

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑃𝑠→𝑠′
𝑎1

Expected reward 𝑄 𝑠, 𝑎1

Show that empirical averaging over k trials gives an update rule

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 −𝑄 𝑠, 𝑎]

𝑟𝑡

h

Next Lecture at 12h15

Exercise 1 (in class)

Blackboard2:

Exercise 1

One-step horizon: Proposition

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known:

 estimate 𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆ 𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎] (1)h

Let learning rate h decrease over time

Convergence in Expectation
After taking action a in state s, we update with

(i) If (1) has converged in expectation given (s,a), then
 𝑄 𝑠, 𝑎 has a value,

(2)
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

(ii) If the learning rate h decreases,

fluctuations around the empirical mean
 𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
decrease. If 𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂

converges for fixed h, then the empirical

mean approaches 𝑸 𝒔, 𝒂 .

 𝑄 𝑠, 𝑎 = 𝐸 𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) =

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

∆ 𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎] (1)

Previous slide.

When evaluating the expectation value given (s,a), the learning rate drops out since we set the left-

hand-side to zero. The exact value of h is not relevant, as discussed in the theorem. Part (i) of the

theorem states that the expectation value of 𝑄 𝑠, 𝑎 is the correct Q-value. For a quick proof of

𝐸 𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) see the video. On the blackboard a stronger statement was shown:
 𝑄 𝑠, 𝑎 = 𝑄(𝑠, 𝑎).

Convergence in expectation is equivalent to imagining that you start millions of trials with the same

value 𝑄 𝑠, 𝑎 without any intermediate update. So in that sense it is like an infinite ‘batch’ of

examples. The stochastic variables are the next state s’ and the received reward 𝑟𝑡. The value of
 𝑄 𝑠, 𝑎 is not stochastic but ‘frozen’. Therefore (trivially) 𝐸 𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄 𝑠, 𝑎 .
In practice, we do not have expectations but online updates with fluctuations. It is important

that h is small at the end of learning so as to limit the amount of fluctuations. Part (ii) states that

online mean for small learning rate also goes to the correct Q-value.

Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the calculation of part

(i) apply analogously to the long-term empirical temporal average (denoted by angular brackets). The

average is across all those time steps where action a was chosen in state s, denoted as
 𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
. We assume convergence, hence our hypothesis reads

∆ 𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝜼 𝑟𝑡 − 𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 0 .

The specific result 𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝑸 𝒔, 𝒂 is based on linearity and is not true for the multi-step

horizon that we discuss later.

Proof: Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) has converged in expectation, then
 𝑄 𝑠, 𝑎 has an expectation value,

(2)

𝑠

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

𝐸 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 =

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆ 𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎] (1)

Blackboard3:

Proof of (i)

Note: the expectation is over all possible ‘futures’. For the bandit problem

the future is defined by the possible next states and possible rewards.

Your notes.

Blackboard3

converged in expectation 𝐸(∆ 𝑄 𝑠, 𝑎 |s,a)=0

expectation of all

possible futures with

correct statistical

weight

we always start in

(s,a) while the

system is frozen

Perspective similar to a batch mode:

update only after (infinitely) many trials that

all start in (s,a) with the same value 𝑄 𝑠, 𝑎
=

update the expectation over all possibilities

that may occur in the next time step.

Part (i) of Theorem

Previous slide:
 𝑄 𝑠, 𝑎 denotes the current estimate of the Q-value. Claim: If Q no longer

changes (in expectation) then it must be the correct Q-value.

There are different views on how to interpret the ‘expectation;:

- Formally from a mathematical point of view: average over all possible outcomes

of the next time step given (s,a).

- In a simulation this would correspond to the following sampling procedure:

You freeze the value of 𝑄 𝑠, 𝑎 and run MANY times (N to infinity) a test with the

state-action pair (s,a) as a starting condition. Then you evaluate the resulting

‘batch update’ averaged across all these examples. If the batch update with

millions of examples is zero, that implies that you have converged to the correct

value.

In the copies of the blackboard notes, there are two versions of the proof:

First, on page 2, top half of page a SIMPLE proof.

Second, on page 4 (final page), the stronger proof with more in-between steps

showing 𝑄 𝑠, 𝑎 = 𝐸 𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) =

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝐸 𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) =

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

Blackboard3
Part (ii) of Theorem:

We work with the online update ∆ 𝑄 𝑠, 𝑎 . With finite learning

rate, the value of 𝑄𝑡 𝑠, 𝑎 fluctuates around a mean

 𝑄𝑡 𝑠, 𝑎
 𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂

Under the hypothesis of the theorem (i.e., the mean converges),

then the mean is equal to the ‘correct’ Q-value.

 𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

𝒕|𝒔,𝒂

Notes.

Proof of part (ii) of the theorem is in the Blackboard notes on page 3 – think

about it. The proof works because of linearity.

More information regarding the philosophy of different averaging procedures also

in Exercise 3 this week and beginning of the lecture of next week.

One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known:

 estimate 𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆ 𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎] (1)h

Let learning rate h decrease over time

Iterative algorithm (1) converges in expectation

Previous slide.

Let us distinguish the ESTIMATE 𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows:

if the actual reward is larger than (my estimate of) the expected reward, then I

should increase (a little bit) my expectations.

The learning rate h :

In exercise 1, we found a rather specific scheme for how to reduce the learning

rate over time. But many other schemes also work in practice. For example you

keep h constant for a block of time, and then you decrease it for the next block.

Note: in later lectures I will often use the symbol a instead of h

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.

Teaching monitoring – monitoring of understanding

[] today, at least 60% of material was new to me.

[] I have the feeling that I have been able to follow

(at least) 80% of the lecture.

Previous slide.

Teaching monitoring – feedback for the teacher.

