ENV 504: Remediation of Soils and Groundwater

Fall '25

Lecture: Wednesdays 8:15a-10:00a, DIA 005 Problem session: Wednesdays 10:15a-12:00p, DIA 005 Instructor: Rizlan Bernier-Latmani

TA: Marion Calvo

W	Date	Lecture (8:15a-10a)	Problem session (10:15a-12p)	Comment	
1	Sept 10	Introduction	Dry/wet density (hmwk #0)		
	1	Contaminant			
		Properties			
2	Sept 17 th	Microbial processes	Chemical properties	Groups assembled	
	•	and monitoring	(hmwk #1)		
3	Sept 24 th	Introduction to	Modeling subsurface	Joaquin Jimenez-	
	_	groundwater	contamination (room	Martinez-	
		modeling (Jimenez-	SG0217)	Data for site to	
		Martinez)	,	remediate provided	
4	Oct 1st	Physicochemical	Microbial processes and	Case study data	
		monitoring + case	monitoring (hmwk #2)	provided	
		study example			
5	Oct 8th	Vapor phase	Physicochemical monitoring	Data summary due	
		processes	(hmwk #3)	(feedback in 2 wks)	
6	Oct 15 th	Students present	Students present case study	Camille Rolland	
		case study (graded)	(graded)		
-	Oct 22 nd	Semester break- no c			
7	Oct 29 th	Adsorption	Vapor phase processes		
			(hmwk #4)		
8	Nov 5 th	Soil treatment and	Adsorption (hmwk #5)		
		washing			
9	Nov 12 th	In-situ	Soil treatment/washing	Remediation	
		bioremediation	(hmwk #6)	strategy due	
				(feedback in 2 wks)	
10	Nov 19 th	Physicochemical	In-situ bioremediation		
		remediation and	(hmwk #7)		
		barriers			
11	Nov 26 th	Regulations and	Physicochemical remediation		
1.1	1,0,20	disposal	and barriers (hmwk #8)		
12	Dec 3 rd	Final Exam	and current (minwa no)		
13	Dec 10 th	Project	1		
14	Dec 17 th	Project			
		- J			
	Jan 9 th			Report due (graded)	
	The property of the first true 45 minute and a multiple				

The course is organized as a lecture during the first two 45-minute periods and a problem session during the third and fourth 45-minute periods.

Evaluation and grading information:

- ➤ Course materials. homework, solutions and reading assignments are available on http://moodle.epfl.ch/course/view.php?id=7931
- ➤ <u>Homework</u> will be discussed the week after the relevant content is discussed. It is not graded but serves to prepare for the exam.
- ➤ <u>Project:</u> Groups of 2-4 students will be asked to design a remediation strategy for a contaminated site. The following are the deliverables:
 - A summary of the data relevant to the site is due on Oct. 8th (not graded).
 - o Presentation of an assigned case study on Oct. 15th (graded).
 - O A selection of the remediation strategy is due on Nov. 12th (not graded).
 - O A final report is due on <u>January 9th</u>. Please send an electronic copy by email to the instructor and wait for confirmation of receipt.
 - The oral presentation (during the exam session) consists of a 20-minute presentation followed by 10 minutes of questions for each group.
 - O All assignments are due by 5p on the day of the deadline. For the report, there will be a grade penalty for tardiness. See details in remediation project description. For the non-graded assignments, no feedback will be provided if the document is turned in late.
- The final exam: will be held on Dec. 3rd at 9:15a and will last 3 hours. It will cover the contents of the entire course.
- Final exam 60% Project (10% case study, 20% oral, and 30% report)
- > Office Hours: by appointment only.