> The Moore-Penrose pseudoinverse
> CS-526 Learning Theory

Consider a $M \times N$ matrix $A \in \mathbb{C}^{N \times M}$. Its transpose and complex conjugate (also called Hermitian conjugate) is the $N \times M$ matrix \bar{A}^{T} that we denote A^{*}. Let $A^{\dagger} \in \mathbb{C}^{N \times M}$ satisfy the following four conditions:

$$
A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A A^{\dagger}\right)^{*}=A A^{\dagger}, \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

A theorem of Moore and Penrose states that such a matrix always exists and is unique. This matrix is called the Moore-Penrose pseudoinverse. Answer the following questions:

1) Let $\Sigma \in \mathbb{C}^{M \times N}$ be a diagonal matrix, that is, $\forall i \neq j: \Sigma_{i j}=0$ (but you don't necessarily have $M=N$). Show that Σ^{\dagger} is the $N \times M$ diagonal matrix with diagonal entries

$$
\forall i \in\{1,2, \ldots, \min \{M, N\}\}:\left(\Sigma^{\dagger}\right)_{i i}=\left\{\begin{array}{cl}
1 / \Sigma_{i i} & \text { if } \Sigma_{i i} \neq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

2) Let $A=U \Sigma V^{*}$ be the singular value decomposition (SVD) of A, that is, both $U \in$ $\mathbb{C}^{M \times M}$ and $V \in \mathbb{C}^{N \times N}$ are unitary matrices and $\Sigma \in \mathbb{R}^{M \times N}$ is a diagonal matrix with real nonnegative diagonal entries (the singular values). Give for A^{\dagger} an expression that only involves U, V (or their inverse U^{*}, V^{*}) and Σ^{\dagger}.
3) Show that if A has full column rank then $A^{\dagger}=\left(A^{*} A\right)^{-1} A^{*}$ and $A^{\dagger} A=I_{N \times N}$.
4) Show that if A has full row rank then $A^{\dagger}=A^{*}\left(A A^{*}\right)^{-1}$ and $A A^{\dagger}=I_{M \times M}$.
5) Show that if A is a square matrix with full rank then $A^{\dagger}=A^{-1}$ is the usual inverse.
6) Let A have full column rank and B have full row rank. Check that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.
