Solutions to Homework 1

Exercise 1.1* a) We can be more general and show that a countable union of countable sets is countable. That is, let $E_{n}, n=1,2,3, \ldots$, be a sequence of countable sets and put

$$
A=\bigcup_{n=1}^{\infty} E_{n}
$$

Every set E_{n} can be arranged in a sequence $\left\{x_{n, k}\right\}, k=1,2,3, \ldots$ Moreover, we can construct an infinite array

x_{11}	x_{12}	x_{13}	\ldots
x_{21}	x_{22}	x_{23}	\ldots
x_{31}	x_{32}	x_{33}	\ldots
\ldots	\ldots	\ldots	\ldots

The array contains elements of A which can be numbered as $x_{11} ; x_{21}, x_{31}, x_{22}, x_{13} ; \ldots$, and so on. We can likewise show that a union of two countable sets is countable.

Observe that \mathbb{Q} is a special case of a countable union of countable sets since for every positive $r \in \mathbb{Q}$ we can write $r=\frac{m}{n}$ for some positive integers m and n. Thus, we can construct a similar array with the m indexing the rows, and n indexing the columns (and skipping over any duplicates). By this argument, the positive rational numbers are at most countable. They are not finite since they include positive integers as a subset. Likewise, non-positive rational numbers are also countable. Finally, \mathbb{Q} is countable since it is just a union of two countable sets.
b) Let $E \in A$ and suppose that E is infinite. Since A is countable, we can arrange its elements in a sequence $\left\{x_{n}\right\}$ of distinct elements. Construct a new sequence $\left\{n_{k}\right\}$ by letting n_{1} be the smallest integer such that $x_{n_{1}} \in E, n_{2}$ the next smallest, and so on. Putting $f(k)=x_{n_{k}}, k=1,2, \ldots$, we obtain a 1-1 correspondence between E an positive integers.
c) The elements of A are sequences like $1,0,0,1,0,1,1,1, \ldots$. Suppose A is countable, and let $s_{1}, s_{2}, s_{3}, \ldots$ be the sequence of all elements of A. We construct a new sequence s as follows. If the nth digit of s_{n} is 1 , we let the nth digits of s be 0 , and vice versa. Thus s is not equal to any element in the sequence, and $s \notin A$. This is a contradiction and so A is not countable.

If we represent real numbers on the interval $[0,1]$ with their binary expansion, we get exactly the set A. Thus, the interval $[0,1]$ is not countable. The interval $[0,1]$ is an infinite subset of \mathbb{R} and therefore (by part b), \mathbb{R} is not countable.
d) Assume that the irrational numbers are countable. Then, \mathbb{R} can be represented as a union of two countable sets and is countable (by part a). We have already shown that \mathbb{R} is not countable in part c) so this is a contradiction. Therefore, irrational numbers are not countable.

Exercise 1.2 One way to solve this problem is to find a set that is larger than \mathbb{Q} but smaller than \mathbb{R}. This is a famous problem known as the continuum hypothesis and it is outside of the scope of this class! However, it is easy to construct an infinite set that is strictly larger that \mathbb{R}. Let A be the power set of \mathbb{R}, that is, A is the set of all subsets of R. The fact that A and \mathbb{R} have different cardinal numbers can be shown by the same diagonal process argument that we used in part c) of exercise 1.1.

Exercise 2. a) $\mathcal{F}=\{\emptyset,\{2\},\{5\},\{1,3\},\{2,5\},\{4,6\},\{1,2,3\},\{1,3,5\},\{2,4,6\},\{4,5,6\}$, $\{1,2,3,5\},\{1,3,4,6\},\{2,4,5,6\},\{1,2,3,4,6\},\{1,3,4,5,6\},\{1,2,3,4,5,6\}\}\left(16=2^{4}\right.$ elements)
b) atoms of $\mathcal{F}:\{1,3\},\{2\},\{4,6\},\{5\}$. Notice that one also has $\mathcal{F}=\sigma(\{1,3\},\{2\},\{4,6\},\{5\})$, as already mentioned in the problem set.
c) Nearly by definition, $\sigma\left(X_{1}, X_{2}\right)=\sigma(\{1,2,3\},\{1,3,5\})=\mathcal{F}$. Besides, the random variable Y satisfies: $Y(1)=Y(3)=2, Y(2)=Y(5)=1$ and $Y(4)=Y(6)=0$. We deduce from there that the atoms of $\sigma(Y)$ are $\{1,3\},\{2,5\}$ and $\{4,6\}$, and therefore that Y contains less information than X_{1}, X_{2}, i.e., that $\sigma(Y) \subset \sigma\left(X_{1}, X_{2}\right)$ and $\sigma(Y) \neq \sigma\left(X_{1}, X_{2}\right)$.

Exercise 3. Here is a systematic but not necessarily optimal procedure, described in words.
Consider first the list of subsets $\mathcal{L}=\left\{A_{1}, \ldots, A_{m}, A_{1}^{c}, \ldots, A_{m}^{c}\right\}$. From there, generate the list $\mathcal{L}^{\prime}=\left\{B_{1}, \ldots, B_{p}\right\}$ made of all possible intersections of elements of \mathcal{L} (which are subsets of Ω). Of course, this new list is not necessarily made of atoms of \mathcal{F} only. We need to browse the collection and at each item, call it G, we discard it if it is empty or if there exists another element F in the collection such that $F \neq \emptyset, F \subset G$ and $F \neq G$. The remaining elements are the atoms of \mathcal{F}.

Exercise 4. a) The atoms of \mathcal{F} are the singletons $\{x\}$, with $x \in[0,1]$.
b) The answer is no. One can check indeed that the σ-field generated by the sets $\{x\}, x \in[0,1]$ is the list of all countable subsets of $[0,1]$, as well as all the complements of countable subsets of $[0,1]$, which is of course not equal to the list of all Borel subsets of $[0,1]$. In particular, the open intervals are not in the list.
c) $\sigma(\{x\}, x \in[0,1])$ comprises all countable unions of singletons in $[0,1]$, as well as all the complements of these sets. One can check that indeed, such a collection of sets is a σ-field, which is moreover much smaller than $\mathcal{B}([0,1])$.

Exercise 5. a) Consider e.g. X_{1} taking values in $\{0,1\}$ and X_{2} taking values in $\{0,2\}$. Then it is possible to deduce the values of both X_{1} and X_{2} from the sole value of Y, so $\sigma(Y)=\sigma\left(X_{1}, X_{2}\right)$ (as an exercise, write this down formally).
b) Consider e.g. X_{1} taking values in $\{3,5\}$ and X_{2} taking values in $\{7,9\}$. When $Y(\omega)=12$, it is impossible to tell whether $X_{1}(\omega)=3, X_{2}(\omega)=9$ or $X_{1}(\omega)=5, X_{2}(\omega)=7$. The random variable Y carries then less information than the two random variables X_{1}, X_{2} together (again, as an exercise, write this down formally).
c) The answer is no, i.e., $\sigma(Y) \neq \sigma\left(X_{1}, X_{2}\right)$, as when $Y(\omega)=a+b$, we will not be able to tell whether $\omega=\omega_{1}$ or $\omega=\omega_{2}$.

Exercise 6. a) Use $B=A \cup(B \backslash A)$, where A and $B \backslash A$ are disjoint, as well as $\Omega=A \cup A^{c}$ and $\mathbb{P}(\Omega)=1$.
b) Use $A \cup B=A \cup(B \backslash(A \cap B))$ where A and $B \backslash(A \cap B)$ are disjoint, as well as a).
c) Use $\cup_{n=1}^{\infty} A_{n}=\cup_{n=1}^{\infty} B_{n}$, where $B_{n}=A_{n} \backslash\left(A_{1} \cup \ldots \cup A_{n-1}\right)$; the B_{n} are disjoint, so by axiom (ii)
and a),

$$
\mathbb{P}\left(\cup_{n=1}^{\infty} A_{n}\right)=\mathbb{P}\left(\cup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(B_{n}\right) \leq \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

d) $\mathbb{P}\left(\cup_{n \geq 1} A_{n}\right)=\mathbb{P}\left(\cup_{n \geq 1}\left(A_{n} \cap A_{n-1}^{c}\right)\right) \stackrel{(*)}{=} \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n} \cap A_{n-1}^{c}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbb{P}\left(A_{i} \cap A_{i-1}^{c}\right)$
$\stackrel{(* *)}{=} \lim _{n \rightarrow \infty} \mathbb{P}\left(\cup_{i=1}^{n}\left(A_{i} \cap A_{i-1}^{c}\right)\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$, where $(*)$, (**) follow from the fact that the sets $A_{n} \cap A_{n-1}^{c}$ are disjoint.
e) Using parts a) and d): $\mathbb{P}\left(\cap_{n \geq 1} A_{n}\right)=1-\mathbb{P}\left(\left(\cap_{n \geq 1} A_{n}\right)^{c}\right)=1-\mathbb{P}\left(\cup_{n \geq 1} A_{n}^{c}\right)=1-\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}^{c}\right)=$ $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$.

