Advanced Probability and Applications

Solutions to Homework 1

Exercise 1. a) We can be more general and show that a countable union of countable sets is countable. That is, let $E_n, n = 1, 2, 3, ...$, be a sequence of countable sets and put

$$A = \bigcup_{n=1}^{\infty} E_n.$$

Every set E_n can be arranged in a sequence $\{x_{n,k}\}, k = 1, 2, 3, \dots$ Moreover, we can construct an infinite array

The array contains elements of A which can be numbered as x_{11} ; x_{21} , x_{31} , x_{22} , x_{13} ; ..., and so on. We can likewise show that a union of two countable sets is countable.

Observe that \mathbb{Q} is a special case of a countable union of countable sets since for every positive $r \in \mathbb{Q}$ we can write $r = \frac{m}{n}$ for some positive integers m and n. Thus, we can construct a similar array with the m indexing the rows, and n indexing the columns (and skipping over any duplicates). By this argument, the positive rational numbers are at most countable. They are not finite since they include positive integers as a subset. Likewise, non-positive rational numbers are also countable. Finally, \mathbb{Q} is countable since it is just a union of two countable sets.

b) Let $E \in A$ and suppose that E is infinite. Since A is countable, we can arrange its elements in a sequence $\{x_n\}$ of distinct elements. Construct a new sequence $\{n_k\}$ by letting n_1 be the smallest integer such that $x_{n_1} \in E$, n_2 the next smallest, and so on. Putting $f(k) = x_{n_k}, k = 1, 2, \ldots$, we obtain a 1-1 correspondence between E an positive integers.

c) The elements of A are sequences like $1, 0, 0, 1, 0, 1, 1, 1, \ldots$ Suppose A is countable, and let s_1, s_2, s_3, \ldots be the sequence of all elements of A. We construct a new sequence s as follows. If the *n*th digit of s_n is 1, we let the *n*th digits of s be 0, and vice versa. Thus s is not equal to any element in the sequence, and $s \notin A$. This is a contradiction and so A is not countable.

If we represent real numbers on the interval [0, 1] with their binary expansion, we get exactly the set A. Thus, the interval [0, 1] is not countable. The interval [0, 1] is an infinite subset of \mathbb{R} and therefore (by part b), \mathbb{R} is not countable.

d) Assume that the irrational numbers are countable. Then, \mathbb{R} can be represented as a union of two countable sets and is countable (by part a). We have already shown that \mathbb{R} is not countable in part c) so this is a contradiction. Therefore, irrational numbers are not countable.

e) One way to solve this problem is to find a set that is larger than \mathbb{Q} but smaller than \mathbb{R} . This is a famous problem known as *the continuum hypothesis* and it is outside of the scope of this class! However, it is easy to construct an infinite set that is strictly larger that \mathbb{R} . Let A be the power set of \mathbb{R} , that is, A is the set of all subsets of R. The fact that A and \mathbb{R} have different cardinal numbers can be shown by the same diagonal process argument that we used in part c) of exercise 1.1.

Exercise 2. a) $\mathcal{F} = \{\emptyset, \{2\}, \{5\}, \{1,3\}, \{2,5\}, \{4,6\}, \{1,2,3\}, \{1,3,5\}, \{2,4,6\}, \{4,5,6\}, \{1,2,3,5\}, \{1,3,4,6\}, \{2,4,5,6\}, \{1,2,3,4,6\}, \{1,2,3,4,5,6\}, \{1,2,3,4,5,6\}\}$ (16 = 2⁴ elements)

b) atoms of $\mathcal{F}: \{1,3\}, \{2\}, \{4,6\}, \{5\}$. Notice that one also has $\mathcal{F} = \sigma(\{1,3\}, \{2\}, \{4,6\}, \{5\})$, as already mentioned in the problem set.

c) Nearly by definition, $\sigma(X_1, X_2) = \sigma(\{1, 2, 3\}, \{1, 3, 5\}) = \mathcal{F}$. Besides, the random variable Y satisfies: Y(1) = Y(3) = 2, Y(2) = Y(5) = 1 and Y(4) = Y(6) = 0. We deduce from there that the atoms of $\sigma(Y)$ are $\{1, 3\}, \{2, 5\}$ and $\{4, 6\}$, and therefore that Y contains less information than X_1, X_2 , i.e., that $\sigma(Y) \subset \sigma(X_1, X_2)$ and $\sigma(Y) \neq \sigma(X_1, X_2)$.

Exercise 3. Here is a systematic but not necessarily optimal procedure, described in words.

Consider first the list of subsets $\mathcal{L} = \{A_1, \ldots, A_m, A_1^c, \ldots, A_m^c\}$. From there, generate the list $\mathcal{L}' = \{B_1, \ldots, B_p\}$ made of all possible intersections of elements of \mathcal{L} (which are *subsets* of Ω). Of course, this new list is not necessarily made of atoms of \mathcal{F} only. We need to browse the collection and at each item, call it G, we discard it if it is empty or if there exists another element F in the collection such that $F \neq \emptyset$, $F \subset G$ and $F \neq G$. The remaining elements are the atoms of \mathcal{F} .

Exercise 4. a) The atoms of \mathcal{F} are the singletons $\{x\}$, with $x \in [0, 1]$.

b) The answer is no. One can check indeed that the σ -field generated by the sets $\{x\}, x \in [0, 1]$ is the list of all countable subsets of [0, 1], as well as all the complements of countable subsets of [0, 1], which is of course not equal to the list of all Borel subsets of [0, 1]. In particular, the open intervals are not in the list.

c) $\sigma(\{x\}, x \in [0, 1])$ comprises all countable unions of singletons in [0, 1], as well as all the complements of these sets. One can check that indeed, such a collection of sets is a σ -field, which is moreover *much* smaller than $\mathcal{B}([0, 1])$.

Exercise 5. Let Ω be an arbitrary set and \mathcal{F} be a σ -field on Ω . In this problem we will show that if \mathcal{F} is infinite, it must be uncountable. We will proceed with proof by contradiction and assume that \mathcal{F} is countable.

a) For every $\omega \in \Omega$, define $B_{\omega} = \bigcap_{A \in \mathcal{F}: \omega \in A} A$. Is $B_{\omega} \in \mathcal{F}$? Why or why not?

Answer: We have assumed that \mathcal{F} is countable. Thus, the collection of all the sets containing ω i.e., $S_{\omega} = \{A : \omega \in A\}$ can be at most countable, as $S_{\omega} \subset \mathcal{F}$. Further, note that the countable intersection of sets in \mathcal{F} is also an element of \mathcal{F} . Thus, $B_{\omega} := \cap S_{\omega}$ is an element of \mathcal{F} .

b) Let $C = \{B_{\omega}\}_{\omega \in \Omega}$ be a collection of all such unique B_{ω} . Argue that C partitions Ω and that it is at most finite, or countable.

Answer: To show that B_{ω} partitions \mathcal{F} we need to show that: 1) $\forall \omega_1, \omega_2 \in \Omega$, we have $B_{\omega_1} \cap B_{\omega_2} = \emptyset$ or $B_{\omega_1} = B_{\omega_2}$, 2) that $\bigcup_{\omega \in \Omega} B_{\omega} = \Omega$.

1) Suppose there exists $\omega_2 \in B_{\omega_1}$ such that $B_{\omega_1} \neq B_{\omega_2}$. Then, $B_{\omega_1} \cap B_{\omega_2}$ is a strict subset of B_{ω_2} or

it is exactly B_{ω_2} . In the first case, it contradicts the fact that B_{ω_2} is the smallest set in \mathcal{F} containing ω_2 . In the second case, it means that B_{ω_2} is a proper subset of B_{ω_1} which again contradicts the fact that B_{ω_1} is the smallest set in \mathcal{F} containing ω_1 . Indeed, either $\omega_1 \in B_{\omega_2}$ or $\omega_1 \in B_{\omega_1} \cap B_{\omega_2}^c$.

2) Since every $\omega \in \Omega$ is in some $B_{\omega}, \cup_{\omega \in \Omega} B_{\omega} = \Omega$.

Since \mathcal{F} is countable, and \mathcal{C} is a subset of \mathcal{F} it is either countable or finite.

c) Argue that $\sigma(\mathcal{C}) = \mathcal{F}$. That is, the σ -field generated by \mathcal{C} is exactly \mathcal{F} .

Answer:

For any $A \in \mathcal{F}$ we can show that $A = \bigcup_{\omega \in A} B_{\omega}$. Indeed, $A \subset \bigcup_{\omega \in A} B_{\omega}$ is trivial. We can show that $\bigcup_{\omega \in A} B_{\omega} \subset A$ by a similar argument as in part b). Assume that there exists $\omega_1 \in \bigcup_{\omega \in A} B_{\omega}$ such that $\omega_1 \notin A$. But then, either $B_{\omega_1} \cap A = \emptyset$ or $B_{\omega_1} \cap A$ is a proper subset of B_{ω_1} which again contradicts the minimality of B_{ω_1} for some $\omega_2 \in B_{\omega_1} \cap A$.

d) Conclude from parts (a) - (c) that there is a contradiction and it is not possible for \mathcal{F} to be countable.

Answer: Observe that we have shown that C is exactly the set of atoms that generates \mathcal{F} and that it is either finite or countable. By part b), a union of any subcollection of C produces a distinct subset of \mathcal{F} . Thus, if C is finite, it's power set is also finite. If C is countable, its power set is uncountable (See PSET 1, exercise 1). Either way, this contradicts the original assumption.

Exercise 6. a) Consider e.g. X_1 taking values in $\{0, 1\}$ and X_2 taking values in $\{0, 2\}$. Then it is possible to deduce the values of both X_1 and X_2 from the sole value of Y, so $\sigma(Y) = \sigma(X_1, X_2)$ (as an exercise, write this down formally).

b) Consider e.g. X_1 taking values in $\{3, 5\}$ and X_2 taking values in $\{7, 9\}$. When $Y(\omega) = 12$, it is impossible to tell whether $X_1(\omega) = 3$, $X_2(\omega) = 9$ or $X_1(\omega) = 5$, $X_2(\omega) = 7$. The random variable Ycarries then less information than the two random variables X_1, X_2 together (again, as an exercise, write this down formally).

c) The answer is no, i.e., $\sigma(Y) \neq \sigma(X_1, X_2)$, as when $Y(\omega) = a + b$, we will not be able to tell whether $\omega = \omega_1$ or $\omega = \omega_2$.