
Information, Calcul et Communication

CS-119(k) ICC – Théorie
Semaine 1

Rafael Pires
rafael.pires@epfl.ch

Lausanne, 20.02.2026

mailto:rafael.pires@epfl.ch

Pourquoi un cours d’introduction à l’informatique pour
SIE et CGC ?

2

Artificial
Intelligence

• 4e pilier de la culture (après la lecture, l’écriture et l'arithmétique)

• Elle constitue désormais une discipline scientifique à part entière :
la science du traitement automatique de l'information.

• L'informatique a non seulement changé notre société,
mais aussi notre façon de faire de la science.

• De nos jours, tout·e ingénieur·e qui maîtrise les sciences du numérique
a clairement un avantage sur les autres…

ICC

3

Information Calcul Communication

ICC

4

Information Calcul Communication

Données Traitement Transfert

ICC

5

Information Calcul Communication
Données Traitement Transfert

Stockage Processeur Réseau

ICC

6

Information

Données Stockage

Calcul

Traitement Processeur

Communication

Transfert Réseau

Partie théorique (logistique)

7

Cours :
§ Les vendredis après-midi de 14h15 à 16h, en salle CE 12
§ Pas de diffusion en temps réel, enregistrement disponible au plus tard le lendemain.

Exercices :
§ Séances d’exercices les vendredis de 16h15 à 17h15 en salles INF 1 et INF 119.

Références (liens sur Moodle) :
§ Questions : Ed discussion
§ Livre «Découvrir le numérique», EPFL Press, 2016
§ Vidéos sur mediaspace.epfl.ch et MOOC sur courseware.epfl.ch

https://plan.epfl.ch/?room==CE%201%202
https://plan.epfl.ch/?room==INF%201
https://plan.epfl.ch/?room==INF%20119
https://mediaspace.epfl.ch/channel/ICC+%28partie+th%C3%A9orique%29/28992
https://courseware.epfl.ch/courses/course-v1:EPFL+PENSEE-INFORMATIQUE+2020/about

Programme du cours

8

51 3 4 6 7 8 9 10 11 12 132

51 3 4 6 8 9 10 11 12 13 142

13.04 Midterm P (2/3) T (1/3)
(20%)

22.05 Miniprojet P
(10%)02.04 Quiz

(5%)

P

T

Pâques

03.04 Congé

??.?? Examen P (1/3) et T (2/3) (65%)
Session d’examen entre 15.06 et 04.07

Cours et séries, partie programmation

Cours et séries, partie théorique

25.05 Congé

Programme du cours

9

Cours et séries, partie programmation

Cours et séries, partie théorique

InformationCalcul Communication

51 3 4 6 7 8 9 10 11 12 132

51 3 4 6 8 9 10 11 12 13 142

P

T

Programme du cours

Calcul

- Algorithmes
- Complexité
- Conception d’algorithmes
- Calculabilité
- Circuits

Information

- Représentation de nombres
- Echantillonnage et

reconstruction de signaux
- Entropie
- Compression

10

Communication

- Réseau
- Cryptographie

Programme vs. algorithme

11

Qu’est-ce qu’un algorithme ?

12

§ Un algorithme n’est pas un programme.

§ Un algorithme est la description des étapes élémentaires
menant à la résolution d’un problème; c’est donc la description
conceptuelle d’un programme.

§ Un programme est l’implémentation d’un algorithme dans un langage
donné et dans un système particulier.

Exemple 1 : calcul du modulo 3 d’un grand nombre

13

Modulo : le reste 𝑟 de la division d’un entier 𝑎 par un entier 𝑏 non nul.
𝑎 mod 𝑏 = 𝑟, si 𝑎 = 𝑞. 𝑏 + 𝑟 et 0 ≤ 𝑟 < 𝑏

Rappel :76321 3
2-6

16

5

-15

13

4

-12

12

4

-12

01 76321 mod 3 = 1

7 + 6 + 3 + 2 + 1 = 19
1 + 9 = 10
1 + 0 = 1 47 = 4.10 + 7 = 4(1+9) + 7

4 + 7 = 11 = 1(1+9) + 1
2 47 mod 3 = 2

Pourquoi ?

0

Exemple 2 : recherche du minimum dans une liste

14

L = (13, 47, 18, 15, 11, 19, 46, 18, 15)
n = 9

1. On considère le premier nombre de la liste le ‘minimum’
2. On le compare au 2ème nombre, le ‘suivant’
3. Si suivant < minimum, alors minimum ← suivant
4. Sinon, on continue, c’est à dire, suivant ← celui d’après
5. On revient à l’étape 3 jusqu’à la fin de la liste
6. Le résultat est la valeur de ‘minimum’

Exemple 3 : problème du voyageur de commerce

15

Lausanne

Genève

Bâle
Zürich

Lucerne

Bellinzone

Exemple 3 : problème du voyageur de commerce

16

Lausanne

Genève

Bâle
Zürich

Lucerne

Bellinzone

5×4×3×2×1=120
𝒏!

Factoriale Résultat
1! 1
2! 2
3! 6
4! 24
5! 120
6! 720
7! 5040
8! 40320
9! 362880

10! 3628800
11! 39916800
12! 479001600
13! 6227020800
14! 87178297200
15! 1307674368000
16! 20922789888000
17! 355687428096000
18! 6402373705728000
19! 121645100408832000
20! 2432902008176640000
21! 51090942171709440000
22! 1124000727777607680000
23! 25852016738884976640000
24! 620448401733239439360000
25! 15511210043330985984000000

𝟐𝟔! ≈ 𝟒. 𝟎𝟑×𝟏𝟎𝟐𝟔

Algorithmes : ingrédients de base

17

Données Traitement

● Affectations
● Structures de contrôle

§ Branchements conditionnels (tests)
§ Itérations (boucles)
§ Boucles conditionnelles

● Entrées
● Sorties
● Variables internes

Algorithmes : instructions

18

● Affectations
● Structures de contrôle

§ Branchements conditionnels (tests)
§ Itérations (boucles)
§ Boucles conditionnelles

x←1
delta ← 𝑏2− 4𝑎𝑐

si delta < 0, alors …
sinon …

pour i allant de 1 à n, (répeter …)

tant que 𝑖 ≤ 10, (répeter …)

Structures de contrôle

19

instruction

instruction

instruction

instruction

…

test

instruction instruction

instruction

…

Branchements

True False
test

instruction

instruction

…

Boucles

True

False

Le test

20

instruction

test

instruction

instruction

…

True False
test

instruction

instruction

…

True

False

§ Chaque condition nécessite une valeur booléenne pour orienter la suite du
traitement

§ Soit vrai (True), soit faux (False)

Boolean testé
une fois.

Boolean testé lors de
chaque passage.

Ingrédients de base

21

1. On considère le premier nombre de la liste le ‘minimum’
2. On le compare au 2ème nombre, le ‘suivant’
3. Si suivant < minimum, alors minimum ← suivant
4. Sinon, on continue, c’est à dire, suivant ← celui d’après
5. On revient à l’étape 3 jusqu’à la fin de la liste
6. Le résultat est la valeur de ‘minimum’

L = (13, 47, 18, 15, 11, 19, 46, 18, 15)
n = 9

Données Instructions
● Affectations
● Structures de contrôle

§ Branchements conditionnels (tests)
§ Itérations (boucles)
§ Boucles conditionnelles

● Entrées
● Sorties
● Variables internes

Entrées

Sortie

Variables internes

Affectations
Branchement
conditionnel

Boucle
conditionnel

Pseudo-code

22

1. On considère le premier nombre de la liste le ‘minimum’
2. On le compare au 2ème nombre, le ‘suivant’
3. Si suivant < minimum, alors minimum ← suivant
4. Sinon, on continue, c’est à dire, suivant ← celui d’après
5. On revient à l’étape 3 jusqu’à la fin de la liste
6. Le résultat est la valeur de ‘minimum’

L = (13, 47, 18, 15, 11, 19, 46, 18, 15)
n = 9

min ← L(1)
Pour i allant de 2 à n

Si L(i) < min
min ← L(i)

Sortir : min

Valeur minimale
entrée : liste L de nombres entiers, de taile n
sortie : la (ou une des) valeur(s) minimale(s)
de la liste

Question : Écrivons un algorithme

23

Proposer un algorithme permettant de résoudre une équation du second degré ax² + bx + c = 0
et de déterminer ses solutions réelles.

Question : Corrigeons un algorithme

24

Repérez l’erreur logique dans cet algorithme d’attribution de note et proposez une version
corrigée.

Attribution de la note
entrée : moyenne m
sortie : lettre L

Si m → 16
L ↑↓ “A”

Si m → 12
L ↑↓ “B”

Si m → 8
L ↑↓ “C”

Sortir : L

Question : Comprenons un algorithme

25

On considère l’algorithme ci-dessous, que calcule-t-il ?

Algorithme mystère
entrée : matrice non vide M de taille n→m
sortie : valeur x

x ↑↓ M [1, 1]
Pour i allant de 1 à n

Pour j allant de 1 à m
Si M [i, j] < x

x ↑↓ M [i, j]
Sortir : x

Comparaison tous contre tous

26

● Question
§ Est-ce que tous les objets visibles sur cette photo

sont différents les uns des autres ?

● Question réciproque
§ Y a-t-il au moins deux objets identiques sur cette

photo ?

Tous les 3 différents ?

27

● Problème à résoudre :
§ Parmi une liste de 3 objets, identifier si ceux-ci sont

tous différents les uns des autres.

s← oui
Si L(1) = L(2), alors s ← non
Si L(1) = L(3), alors s ← non
Si L(2) = L(3), alors s ← non
Sortir : s

Tous les 3 différents

entrée : liste L de 3 objets
sortie : valeur binaire oui/non

s← oui
Pour i allant de 1 à 3 :

Pour k allant de 1 à 3 :
Si L(i) = L(k) et i≠k, alors s ← non

Sortir : s

Tous les 3 différents

entrée : liste L de 3 objets
sortie : valeur binaire oui/non

9 comparaisons 3 comparaisons

Comparaisons dans une boucle imbriquée

28

i k 1 2 3

1 1,1 1,2 1,3

2 2,1 2,2 2,3

3 3,1 3,2 3,3

Tous différents ?

29

● Problème à résoudre :
§ Parmi une liste de n objets, identifier si

ceux-ci sont tous différents les uns des
autres.

s← oui
Pour i allant de 1 à n-1 :

Pour k allant de i+1 à n :
Si L(i) = L(k), alors s ← non

Sortir : s

Tous différents

entrée : liste L de n objets
sortie : valeur binaire oui/non

Tous différents ?

30

● Problème à résoudre :
§ Parmi une liste de n objets, identifier si

ceux-ci sont tous différents les uns des
autres.

s← oui
Pour i allant de 1 à n-1 :

Pour k allant de i+1 à n :
Si L(i) = L(k), alors s ← non

Sortir : s

Tous différents

entrée : liste L de n objets
sortie : valeur binaire oui/non

i = 1: k = 2, 3, 4, …, n n-1 comp.
i = 2: k = 3, 4, …, n n-2 comp.
i = 3: k = 4, …, n n-3 comp.
⋮ ⋮ ⋮

i = n-2: k = n-1, n 2 comp.
i = n-1: k = n 1 comp.

1 + 2 + 3 + … + (n-2) + (n-1) = !(!#$)& comp.

Algorithme d’Euclide

31

● L’algorithme d’Euclide utilise une boucle conditionnelle pour trouver
le plus grand diviseur commun (pgdc) de deux nombres entiers.

tant que b≠ 0
temp ← b
b ← a mod b
a ← temp

Sortir : a

pgdc

entrée : a, b, deux nombres entiers positifs
sortie : pgdc(a, b)

a = 30 b = 12

30 = 2 . 3 . 5 12 = 2 . 2 . 3

pgdc(30, 12) = 6

a b temp

30 12 12

12 6 6

6 0
pgdc(a, b) = pgdc(a-b, b) = pgdc(a-k.b, b) = pgdc(a mod b, b)

Résumé Cours 1 – ICC-T

32

• Programme vs. Algorithme

• Exemples d’algorithmes

• Ingrédients de base : donnés et instructions

• Boucle imbriquée / conditionnelle

rafael.pires@epfl.ch

Merci 33

