Problem Set 7 (Graded) — Due Tuesday, Dec 19, before class starts For the Exercise Sessions on Dec 5 and 12

Last name	First name	SCIPER Nr	Points

Problem 1: Exponential Families and Maximum Entropy 1

Let $Y=X_1+X_2$. Find the maximum entropy of Y under the constraint $\mathbb{E}[X_1^2]=P_1$, $\mathbb{E}[X_2^2]=P_2$:

- (a) If X_1 and X_2 are independent.
- (b) If X_1 and X_2 are allowed to be dependent.

Solution 1. (a) If X_1 and X_2 are independent,

$$Var[Y] = Var[X_1 + X_2] = Var[X_1] + Var[X_2] \le \mathbb{E}[X_1^2] + \mathbb{E}[X_2^2] = P_1 + P_2 \tag{1}$$

where equality holds when $\mathbb{E}[X_1] = \mathbb{E}[X_2] = 0$. Thus we have

$$\max_{f(y)} h(Y) \leq \frac{1}{2} \log(2\pi e(P_1 + P_2)) \tag{2}$$

where equality holds when Y is Gaussian with zero mean, which requires X_1 and X_2 to be independent and Gaussian with zeros mean.

(b) For dependent X_1 and X_2 , we have

$$Var(Y) \le \mathbb{E}[Y^2] = \mathbb{E}[(X_1 + X_2)^2] = \mathbb{E}[X_1^2] + \mathbb{E}[X_2^2] + 2\mathbb{E}[X_1 X_2] \le (\sqrt{P_1} + \sqrt{P_2})^2 \tag{3}$$

where the first equality holds when $\mathbb{E}[Y] = \mathbb{E}[X_1] + \mathbb{E}[X_2] = 0$, and the send equality holds when $X_2 = \sqrt{\frac{P_2}{P_1}} X_1$. Hence, $\max_{f(y)} h(Y) \leq \frac{1}{2} \log(2\pi e(\sqrt{P_1} + \sqrt{P_2})^2)$, where equality holds when Y is Gaussian with zero mean, which requires X_1 and X_2 to be Gaussian with zero mean and $X_2 = \sqrt{\frac{P_2}{P_1}} X_1$.

Problem 2: Exponential Families and Maximum Entropy 2

Find the maximum entropy density f, defined for $x \ge 0$, satisfying $\mathbb{E}[X] = \alpha_1$, $\mathbb{E}[\ln X] = \alpha_2$. That is, maximize $-\int f \ln f$ subject to $\int x f(x) dx = \alpha_1$, $\int (\ln x) f(x) dx = \alpha_2$, where the integral is over $0 \le x < \infty$. What family of densities is this?

Solution 2. The maximum entropy distribution subject to constraints

$$\int x f(x) dx = \alpha_1 \tag{4}$$

and

$$\int (\ln x) f(x) dx = \alpha_2 \tag{5}$$

is of the form

$$f(x) = e^{\lambda_0 + \lambda_1 x + \lambda_2 \ln x} = cx^{\lambda_2} e^{\lambda_1 x}$$
(6)

which is of the form of a Gamma distribution. The constants should be chosen so as to satisfy the constraints. We need to solve the following equations

$$\int_0^\infty f(x)dx = \int_0^\infty cx^{\lambda_2} e^{\lambda_1 x} dx = 1$$
 (7)

$$\int_0^\infty x f(x) dx = \int_0^\infty cx^{\lambda_2 + 1} e^{\lambda_1 x} dx = \alpha_1$$
 (8)

$$\int_0^\infty (\ln x) f(x) dx = \int_0^\infty cx^{\lambda_2} e^{\lambda_1 x} \ln x dx = \alpha_2$$
 (9)

Thus, the Gamma distributions $f(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}$ with

$$\mathbb{E}[X] = k\theta = \alpha_1 \qquad \qquad \mathbb{E}[\ln X] = \psi(k) + \ln(\theta) = \alpha_2 \tag{10}$$

is the exponential family we want.

Problem 3: Exponential Families and Maximum Entropy 3

For t>0, consider a family of distributions supported on $[t,+\infty]$ such that $\mathbb{E}[\ln X]=\frac{1}{\alpha}+\ln t$, $\alpha>0$.

- 1. What is the parametric form of a maximum entropy distribution satisfying the constraint on the support and the mean?
- 2. Find the exact form of the distribution.

Solution 3. (i) The maximum entropy distribution has the parametric form $e^{\theta \ln x - A(\theta)} = x^{\theta} e^{-A(\theta)}$.

(ii) Let us first find the value of $A(\theta)$ from the density constraint $\int_t^\infty x^\theta e^{-A(\theta)} dx = 1$. This gives $e^{-A(\theta)} = -\frac{\theta+1}{t^{\theta+1}}$.

Next we find θ from the mean constraint $\int_t^\infty x^\theta e^{-A(\theta)} \ln x \, dx = \frac{1}{\alpha} + \ln t$. This gives $\frac{t^{\theta+1}((\theta+1)\ln t-1)}{t^{\theta+1}(\theta+1)} = \ln t - \frac{1}{\theta+1} = \frac{1}{\alpha} + \ln t$ and therefore $\theta = -(\alpha+1)$. The resulting form of the distribution is

$$p(x) = \frac{\alpha t^{\alpha}}{x^{\alpha+1}}$$

Problem 4: Exponential Families and Maximum Entropy 4: I-projections

Let P denote the zero-mean and unit-variance Gaussian distribution. Assume that you are given N iid samples distributed according to P and let \hat{P}_N be the empirical distribution.

Let Π denote the set of distributions with second moment $\mathbb{E}[X^2] = 2$. We are interested in

$$\lim_{N \to \infty} \frac{1}{N} \log \Pr{\{\hat{P}_N \in \Pi\}} = -\inf_{Q \in \Pi} D(Q \| P).$$

- (a) Determine $-\operatorname{arginf}_{Q\in\Pi}D(Q\|P)$, i.e., determine the element Q for which the infinum is taken on.
- (b) Determine $-\inf_{Q\in\Pi} D(Q||P)$.

Solution 4. We are looking for the I-projection of P onto Π , call the result Q. Since Π is a linear family with a single constraint on the expected value of x^2 we know that the density of the minimizing distribution has the form

$$q(x) = p(x)e^{\theta x^2 - A(\theta)}$$
.

If we insert $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ this gives us

$$q(x) = e^{-\frac{x^2}{2} + \theta x^2 - \tilde{A}(\theta)}.$$

We recognize the right-hand side to be the density of a zero-mean Gaussian distribution and by assumption this distribution has second moment 2. Hence, the solution is a zero-mean Gaussian distribution with variance 2, i.e., $q(x) = \frac{1}{\sqrt{4\pi}}e^{-\frac{x^2}{4}}$. The asymptotic exponent is given by the KL distance between these two distributions. We have

$$D(q||p) = \int \frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4}} \log \frac{\frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4}}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}} dx$$

$$= \frac{1}{2} \log \frac{1}{2} + \int \frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4}} [-\frac{x^2}{4} + \frac{x^2}{2}] dx$$

$$= \frac{1}{2} (\log \frac{1}{2} + 1) = \frac{1}{2} (-\log 2 + 1) \sim 0.153426.$$

To summarize

- 1. $-\operatorname{arginf}_{Q \in \Pi} D(Q \| P)$ is given by $q(x) = \frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4}}$.
- 2. $-\inf_{Q \in \Pi} D(Q||P) = -0.153426$.

Problem 5: Choose the Shortest Description

Suppose $C_0: \mathcal{U} \to \{0,1\}^*$ and $C_1: \mathcal{U} \to \{0,1\}^*$ are two prefix-free codes for the alphabet \mathcal{U} . Consider the code $C: \mathcal{U} \to \{0,1\}^*$ defined by

$$C(u) = \begin{cases} [0, C_0(u)] & \text{if } \operatorname{length} C_0(u) \leq \operatorname{length} C_1(u) \\ [1, C_1(u)] & \text{else.} \end{cases}$$

Observe that $\operatorname{length}(\mathcal{C}(u)) = 1 + \min\{\operatorname{length}(\mathcal{C}_0(u)), \operatorname{length}(\mathcal{C}_1(u))\}.$

- (a) Is \mathcal{C} a prefix-free code? Explain.
- (b) Suppose C_0, \ldots, C_{K-1} are K prefix-free codes for the alphabet \mathcal{U} . Show that there is a prefix-free code \mathcal{C} with

$$\operatorname{length}(\mathcal{C}(u)) = \lceil \log_2 K \rceil + \min_{0 \le k < K-1} \operatorname{length}(\mathcal{C}_k(u)).$$

(c) Suppose we are told that U is a random variable taking values in \mathcal{U} , and we are also told that the distribution p of U is one of K distributions p_0, \ldots, p_{K-1} , but we do not know which. Using (b) describe how to construct a prefix-free code \mathcal{C} such that

$$\mathbb{E}[\operatorname{length}(\mathcal{C}(U))] \leq \lceil \log_2 K \rceil + 1 + H(U).$$

[Hint: From class we know that for each k there is a prefix-free code C_k that descibes each letter u with at most $\lceil -\log_2 p_k(u) \rceil$ bits.]

- **Solution 5.** (a) Yes, C is a prefix-free code. We can prove it by contradiction. Suppose there exist $u, v \in \mathcal{U}$ such that C(u) is a prefix of C(v). Then they must start with the same bit. Without loss of generality, let us assume they start with 0, then we have $C(u) = 0C_0(u)$ is a prefix of $C(v) = 0C_0(v)$. This requires $C_0(u)$ is a prefix of $C_0(v)$ which contradicts to C_0 is prefix free code.
- (b) Generalizing the given construction, we can construct the code C(u) for any $u \in \mathcal{U}$ as follows.

$$C(u) = \operatorname{Bin}(i^*)C_{i^*}(u) \tag{11}$$

where $i^* = \arg\min_{0 \le k \le K-1} \operatorname{length} C_i(u)$ and $\operatorname{Bin}(i^*)$ is the binary representation of number i^* . The length of such code is exactly the given expression and by the same reason in (a), we can show that it is prefix-free.

(c) As the hint suggests, we can use prefix free code C_k such that $\operatorname{length}(C_k) \leq \lceil -\log_2 p_k(u) \rceil$ and construct the prefix-free code C as in [b]. Then we have

$$\operatorname{length}(\mathcal{C}(u)) = \lceil \log_2 K \rceil + \min_{0 \le k < K - 1} \operatorname{length}(\mathcal{C}_k(u))$$
(12)

$$\leq \lceil \log_2 K \rceil + 1 - \min_{0 < k < K - 1} \log_2 p_k(u) \tag{13}$$

$$\leq \lceil \log_2 K \rceil + 1 - \log_2 p(u) \tag{14}$$

Taking expectation at both sides, we get that

$$\mathbb{E}[\operatorname{length}(\mathcal{C}(U))] \le \lceil \log_2 K \rceil + 1 + H(U). \tag{15}$$

Problem 6: Universal codes

Suppose we have an alphabet \mathcal{U} , and let Π denote the set of distributions on \mathcal{U} . Suppose we are given a family of S of distributions on \mathcal{U} , i.e., $S \subset \Pi$. For now, assume that S is finite.

Define the distribution $Q_S \in \Pi$

$$Q_S(u) = Z^{-1} \max_{P \in S} P(u)$$

where the normalizing constant $Z = Z(S) = \sum_{u} \max_{P \in S} P(u)$ ensures that Q_S is a distribution.

- (a) Show that $D(P||Q) \le \log Z \le \log |S|$ for every $P \in S$.
- (b) For any S, show that there is a prefix-free code $\mathcal{C}: \mathcal{U} \to \{0,1\}^*$ such that for any random variable U with distribution $P \in S$,

$$E[\operatorname{length} C(U)] < H(U) + \log Z + 1.$$

(Note that \mathcal{C} is designed on the knowledge of S alone, it cannot change on the basis of the choice of P.) [Hint: consider $L(u) = -\log_2 Q_S(u)$ as an 'almost' length function.]

(c) Now suppose that S is not necessarily finite, but there is a finite $S_0 \subset \Pi$ such that for each $u \in \mathcal{U}$, $\sup_{P \in S} P(u) \leq \max_{P \in S_0} P(u)$. Show that $Z(S) \leq |S_0|$.

Now suppose $\mathcal{U} = \{0,1\}^m$. For $\theta \in [0,1]$ and $(x_1,\ldots,x_m) \in \mathcal{U}$, let

$$P_{\theta}(x_1,\ldots,x_n) = \prod_i \theta^{x_i} (1-\theta)^{1-x_i}.$$

(This is a fancy way to say that the random variable $U = (X_1, \dots, X_n)$ has i.i.d. Bernoulli θ components). Let $S = \{P_\theta : \theta \in [0, 1]\}$.

(d) Show that for $u = (x_1, ..., x_m) \in \{0, 1\}^m$

$$\max_{\theta} P_{\theta}(x_1, \dots, x_m) = P_{k/m}(x_1, \dots, x_m)$$

where $k = \sum_{i} x_i$.

(e) Show that there is a prefix-free code $C: \{0,1\}^m \to \{0,1\}^*$ such that whenever X_1, \ldots, X_n are i.i.d. Bernoulli,

$$\frac{1}{m}\mathbb{E}[\operatorname{length} \mathcal{C}(X_1,\ldots,X_m)] \leq H(X_1) + \frac{1 + \log_2(1+m)}{m}.$$

Solution 6. (a) From the definition $Q_S(u) = Z^{-1} \max_{P \in S} P(u)$, we have $Q_S(u) \geq P(u)/Z$. Hence, $Z \geq P(u)/Q_S(u)$ and

$$D(P||Q) = \sum_{u} P(u) \log \frac{P(u)}{Q(u)} \le \sum_{u} P(u) \log Z = \log Z$$

From $Z = Z(S) = \sum_{u \max_{P \in S} P(u)}$, we have $Z \leq \sum_{u \sum_{P \in S} P(u)} = \sum_{P \in S} \sum_{u p \in S} P(u) = |S|$. So $\log Z \leq \log |S|$.

(b) For any S, we can find a binary code with length function $L(u) = \lceil -\log_2 Q_S(u) \rceil$ for the codeword C(u). Since the length function of this binary code satisfies the Kraft Inequality,

$$\sum_{u} 2^{-L(u)} = \sum_{u} 2^{-\lceil -\log_2 Q_S(u) \rceil} \le \sum_{u} 2^{\log_2 Q_S(u)} \le \sum_{u} Q_S(u) = 1$$

there exists a prefix-free code C with length function L(u). And the expected length of such code can be computed as

$$\mathbb{E}[\operatorname{length} \mathcal{C}(U)] = \mathbb{E}[L(U)] = \mathbb{E}[\lceil -\log_2 Q_S(u)\rceil]$$

$$\leq \mathbb{E}[1 - \log_2 Q_S(u)]$$

$$= 1 + \mathbb{E}[\log_2 \frac{P(u)}{Q_S(u)} + \log_2 \frac{1}{P(u)}]$$

$$= 1 + D(P||Q) + H(U)$$

$$\leq 1 + \log Z + H(U)$$

(c) Similar as we showed in (a),

$$Z(S) = \sum_{u} \max_{P \in S} P(u) \leq \sum_{u} \sup_{P \in S} P(u) \leq \sum_{u} \max_{P \in S_0} P(u) \leq \sum_{u} \sum_{P \in S_0} P(u) = |S_0|$$

(d) Rewrite the definition of P_{θ} :

$$P_{\theta}(x_1, \dots, x_m) = \prod_{i} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i} x_i} (1 - \theta)^{\sum_{i} (1 - x_i)} = \theta^k (1 - \theta)^{m - k}$$

Thus, $\log P_{\theta} = k \log \theta + (m - k) \log(1 - \theta)$.

Compute the differentiation of $\log P_{\theta}$ w.r.t θ :

$$\frac{d}{d\theta}\log P_{\theta} = \frac{k}{\theta} - \frac{m-k}{1-\theta}$$

Set $\frac{d}{d\theta} \log P_{\theta} = 0$, we get $\hat{\theta} = k/m$. As logarithm is an increasing function, P_{θ} is maximized when $\log P_{\theta}$ is maximized.

(e) From (b) we know that there exists a prefix-free code such that

$$\mathbb{E}[\operatorname{length} \mathcal{C}(X_1, \dots, X_m)] \leq H(X_1, \dots, X_m) + \log Z + 1$$

where $H(X_1,\ldots,X_m)=mH(X_1)$, since they are i.i.d. From (d), we know that $S_0=\{P_{k/m}: k=\sum_i^m x_i\}$ has the property in (c). Since each x_i is binary, k is an integer between 0 and m. So $|S_0|=m+1$, we have $Z(S)\leq |S_0|=m+1$. Therefore we have

$$\frac{1}{m}\mathbb{E}[\operatorname{length} \mathcal{C}(X_1, \dots, X_m)] \le H(X_1) + \frac{\log(1+m) + 1}{m}$$

Problem 7: Elias coding

Let 0^n denote a sequence of n zeros. Consider the code (the subscript U a mnemonic for 'Unary'), $\mathcal{C}_U: \{1, 2, \ldots\} \to \{0, 1\}^*$ for the positive integers defined as $\mathcal{C}_U(n) = 0^{n-1}$.

(a) Is \mathcal{C}_U injective? Is it prefix-free?

Consider the code (the subscript B a mnenonic for 'Binary'), $C_B : \{1, 2, ...\} \to \{0, 1\}^*$ where $C_B(n)$ is the binary expansion of n. I.e., $C_B(1) = 1$, $C_B(2) = 10$, $C_B(3) = 11$, $C_B(4) = 100$, Note that

length
$$C_B(n) = \lceil \log_2(n+1) \rceil = 1 + \lfloor \log_2 n \rfloor$$
.

(b) Is \mathcal{C}_B injective? Is it prefix-free?

With $k(n) = \operatorname{length} \mathcal{C}_B(n)$, define $\mathcal{C}_0(n) = \mathcal{C}_U(k(n))\mathcal{C}_B(n)$.

- (c) Show that C_0 is a prefix-free code for the positive integers. To do so, you may find it easier to describe how you would recover n_1, n_2, \ldots from the concatenation of their codewords $C_0(n_1)C_0(n_2)\ldots$.
- (d) What is length($C_0(n)$)?

Now consider $C_1(n) = C_0(k(n))C_B(n)$.

(e) Show that C_1 is a prefix-free code for the positive integers, and show that $\operatorname{length}(C_1(n)) = 2 + 2|\log(1+|\log n|)| + |\log n| \le 2 + 2\log(1+\log n) + \log n$.

Suppose U is a random variable taking values in the positive integers with $\Pr(U=1) \ge \Pr(U=2) \ge \dots$

(f) Show that $\mathbb{E}[\log U] \leq H(U)$, [Hint: first show $i \Pr(U=i) \leq 1$], and conclude that

$$E[\operatorname{length} C_1(U)] \le H(U) + 2\log(1 + H(U)) + 2.$$

Solution 7. (a) As $C_U(n)$ and $C_U(m)$ are of different lengths when $n \neq m$, the code is injective. It is not prefix free, in particular $C_U(1) = \text{empty-string}$ is a prefix of all other codewords.

(b) As different integers have different binary expansions, C_B is injective. It is not prefix free, e.g., $C_B(1) = 1$ is a prefix of all other codewords.

(c) The codeword of $C_0(n) = C_U(k(n))C_B(n)$ is concatenated by two parts. The first part, $C_U(k(n))$, is the sequence of zeros with length of k(n) - 1. And the second part, $C_B(n)$ is a binary representation for n. For any two different positive integers n_1 and n_2 , let's assume that $n_1 < n_2$, which implies that length($C_0(n_1)$) $\leq \text{length}(C_0(n_2))$ and $k(n_1) \leq k(n_2)$. We show that $C_0(n_1)$ is not a prefix of $C_0(n_2)$.

If $k(n_1) < k(n_2)$, the first $k(n_1)$ bits of $\mathcal{C}_0(n_1)$ are $0...01^1$, while the first $k(n_1)$ bits of $\mathcal{C}_0(n_2)$ are all zeros. So in such cases, $\mathcal{C}_0(n_1)$ cannot be a prefix of $\mathcal{C}_0(n_2)$. If $k(n_1) = k(n_2)$, we have length($\mathcal{C}_0(n_1)$) = length($\mathcal{C}_0(n_2)$). Although the first $k(n_1)$ bits of $\mathcal{C}_0(n_1)$ and $\mathcal{C}_0(n_2)$ are the same, the second parts, $\mathcal{C}_B(n_1)$ and $\mathcal{C}_B(n_2)$ are different. So $\mathcal{C}_0(n_1)$ cannot be a prefix of $\mathcal{C}_0(n_2)$. Therefore, $\mathcal{C}_0(n_1)$ cannot be a prefix of $\mathcal{C}_0(n_2)$ for any positive integers $n_1 < n_2$. In other words, \mathcal{C}_0 is a prefix-free code for the positive integers.

(d)Since
$$k(n) = \operatorname{length}(\mathcal{C}_B(n)) = 1 + \lfloor \log_2 n \rfloor$$
,

$$\operatorname{length}(\mathcal{C}_0(n)) = \operatorname{length}(\mathcal{C}_U(k(n))) + \operatorname{length}(\mathcal{C}_B(n))$$

$$= k(n) - 1 + 1 + \lfloor \log_2 n \rfloor$$

$$= 1 + 2 \lfloor \log_2 n \rfloor$$

(e) Similarly, as we did in (c), we can show that for any positive integers $n_1 < n_2$, $C_1(n_1)$ cannot be a prefix of $C_1(n_2)$. If $k(n_1) < k(n_2)$, $C_0(k(n_1))$ is not a prefix of $C_0(k(n_2))$, since C_0 is prefix-free for positive integers. Hence, in such cases, $C_1(n_1)$ cannot be a prefix of $C_1(n_2)$. If $k(n_1) = k(n_2)$, we have length($C_1(n_1)$) = length($C_1(n_2)$). Although the first length($C_0(k(n_1))$) bits of $C_1(n_1)$ and $C_1(n_2)$ are the same, the second parts, $C_B(n_1)$ and $C_B(n_2)$ are different. So $C_1(n_1)$ cannot be a prefix of $C_1(n_2)$. Therefore, $C_1(n_1)$ cannot be a prefix of $C_1(n_2)$ for any positive integers $n_1 < n_2$. In other words, C_1 is a prefix-free code for the positive integers.

The length of $C_1(n)$ can be computed as

$$\begin{aligned} \operatorname{length}(\mathcal{C}_1(n)) &= \operatorname{length}(\mathcal{C}_0(k(n))) + \operatorname{length}(\mathcal{C}_B(n)) \\ &= 1 + 2\lfloor \log_2 k(n) \rfloor + k(n) \\ &= 2 + 2\lfloor \log_2 (1 + \lfloor \log_2 n \rfloor) \rfloor + \lfloor \log_2 n \rfloor \\ &\leq 2 + 2\log_2 (1 + \log_2 n) + \log_2 n \end{aligned}$$

(f) For random variable U with $\Pr(U=1) \ge \Pr(U=2) \ge \dots$, we have

$$1 = \sum_{j} \Pr(U = j) \ge \sum_{j=1}^{i} \Pr(U = j) \ge i \Pr(U = i)$$

Taking log at both sides, we get $-\log \Pr(U=i) \ge \log i, \forall i$.

$$\mathbb{E}[\log U] = \sum_{i} \Pr(U = i) \log i \le -\sum_{i} \Pr(U = i) \log \Pr(U = i) = H(U)$$

Using the results from (e) we have

$$\mathbb{E}[\operatorname{length}(\mathcal{C}_1(U))] \leq \mathbb{E}[2 + 2\log(1 + \log U) + \log U]$$

$$= 2 + 2\mathbb{E}[\log(1 + \log U)] + \mathbb{E}[\log U]$$

$$\leq 2 + 2\log(1 + H(U)) + H(U)$$

where we used $\mathbb{E}[\log(x)] \leq \log(\mathbb{E}[x])$ for the second term because $\log(x)$ is a concave and monotonically increasing function.

¹If $k(n_1) = 1$, then there is no zeros and sequence starts with 1.